Zhou Junlei, Xue Jialiang, Li Yang, Liu Furui, Du Fang, Yu Zhenhua
School of Information Engineering, Ningxia University, 489 West Helan Mountain Road, Xixia District, Yinchuan 750021, Ningxia, China.
Ningxia Key Laboratory of Artificial Intelligence and Information Security for Channeling Computing Resources from the East to the West, Ningxia University, 489 West Helan Mountain Road, Xixia District, Yinchuan 750021, Ningxia, China.
Brief Bioinform. 2025 Jul 2;26(4). doi: 10.1093/bib/bbaf400.
Single-cell multi-omics technologies enable comprehensive molecular profiling, offering insights into cellular heterogeneity and biological mechanisms. However, current cross-modality translation methods struggle with high-dimensional, noisy, and sparse single-cell data. We propose single-cell Diffusion models for Cross-modality Translation (scDCT), a probabilistic framework for bidirectional cross-modality translation in single-cell data, including single-cell RNA sequencing, single-cell assay for transposase-accessible chromatin sequencing, and protein expression. scDCT integrates modality-specific autoencoders with conditional denoising diffusion probabilistic models to map inputs to latent spaces and perform probabilistic translation across modalities. This design captures cell-type heterogeneity, accounts for data sparsity, and models uncertainty during translation. Extensive experiments on eight benchmark datasets demonstrate that scDCT outperforms state-of-the-art methods across paired, unpaired, cross-type, and cross-tissue settings, offering a robust and interpretable solution for single-cell multi-omics integration.
单细胞多组学技术能够实现全面的分子谱分析,为深入了解细胞异质性和生物学机制提供了线索。然而,当前的跨模态翻译方法在处理高维、有噪声和稀疏的单细胞数据时面临困难。我们提出了用于跨模态翻译的单细胞扩散模型(scDCT),这是一个用于单细胞数据双向跨模态翻译的概率框架,包括单细胞RNA测序、单细胞转座酶可及染色质测序分析和蛋白质表达。scDCT将特定模态的自动编码器与条件去噪扩散概率模型相结合,以将输入映射到潜在空间并进行跨模态的概率翻译。这种设计捕捉了细胞类型的异质性,考虑了数据稀疏性,并在翻译过程中对不确定性进行建模。在八个基准数据集上进行的大量实验表明,scDCT在配对、非配对、跨类型和跨组织设置中均优于现有方法,为单细胞多组学整合提供了一个强大且可解释的解决方案。