Suppr超能文献

利用基于新型深度变压器的神经网络提高淋巴瘤检测的精度。

Enhancing precision in lymphoma detection with novel deep transformer-based neural networks.

作者信息

Alanazi Turki M

机构信息

Department of Electrical Engineering, College of Engineering, University of Hafr Al Batin, Hafr Al Batin, Saudi Arabia.

出版信息

PLoS One. 2025 Aug 13;20(8):e0329261. doi: 10.1371/journal.pone.0329261. eCollection 2025.

Abstract

Lymphoma appears as swollen lymph nodes and weakened immune-protective tissues, frequently resulting in tiredness and loss of weight. Improving the outlook of this malignancy includes using computer-assisted analysis of Positron Emission Tomography (PET) pictures, which identify changes in metabolism. This article presents an Automatic Pre-Segmentation Model (APSM) that uses the Swin Transformer (ST). The APSM accurately separates inputs by recognizing pixel differences caused by changes in metabolism in various tissues and lymph nodes. Training the Swin Transformer system for classification and identification happens simultaneously, focusing mainly on the lymph node area. The model effectively divides the Lymphoma area by examining differences in patterns between regional features and changes in pixels. This segmentation model combines transformer network training to simultaneously learn fractal variations and feature changes, helping to adjust the relationships between training and testing inputs. The segmentation model's effectiveness comes from its capability to stop training the matching transformer network when it identifies new deviations, alterations, or both. The proposed model achieved 12.68% higher segmentation accuracy, 13.38% improved precision, and reduced overhead, error, and segmentation time by 12.73%, 9.27%, and 10.23%, respectively, outperforming existing methods.

摘要

淋巴瘤表现为淋巴结肿大和免疫保护组织减弱,常导致疲劳和体重减轻。改善这种恶性肿瘤的预后包括使用正电子发射断层扫描(PET)图像的计算机辅助分析,该分析可识别代谢变化。本文提出了一种使用Swin Transformer(ST)的自动预分割模型(APSM)。APSM通过识别各种组织和淋巴结中代谢变化引起的像素差异来准确分离输入。同时对Swin Transformer系统进行分类和识别训练,主要关注淋巴结区域。该模型通过检查区域特征之间的模式差异和像素变化,有效地划分了淋巴瘤区域。这种分割模型结合了变压器网络训练,以同时学习分形变化和特征变化,有助于调整训练和测试输入之间的关系。分割模型的有效性源于其在识别新的偏差、变化或两者时能够停止对匹配变压器网络的训练。所提出的模型在分割精度上提高了12.68%,在精确率上提高了13.38%,并分别将开销、误差和分割时间减少了12.73%、9.27%和10.23%,优于现有方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d91c/12349713/2858d6a75f68/pone.0329261.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验