Suppr超能文献

对不同丝状化状态的结构洞察揭示了细菌STING激活的调控机制。

Structural insights into distinct filamentation states reveal a regulatory mechanism for bacterial STING activation.

作者信息

Yang Yuchao, Liu Yueyue, Ma Xue, Zhao Xuan, Cao Jian, Liu Yu, Li Shanqin, Wu Jing, Gao Yuanzhu, Chen Lianwan, Wu Changxin, Shang Guijun, Liu Sheng, Lu Defen

机构信息

Shanxi Key Laboratory for Modernization of Traditional Chinese Veterinary Medicine (TCVM), College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China.

College of Life Sciences, Shanxi Agricultural University, Taiyuan, China.

出版信息

mBio. 2025 Aug 14:e0038825. doi: 10.1128/mbio.00388-25.

Abstract

The cyclic oligonucleotide-based antiphage signaling system (CBASS) is a bacterial immune mechanism that was evolutionarily linked to the eukaryotic cGAS-STING pathway, which protects against phage infection through abortive cell death. CBASS operons encode cyclic dinucleotide synthases (CD-NTases) and effector proteins (Caps), such as bacterial STING, which senses cyclic dinucleotides like 3'3'-c-di-GMP to trigger defense. Although bacterial STING oligomerizes into filaments upon ligand binding, the functional roles of distinct filament states remain unclear. Here, we resolve cryo-EM structures of TIR-STING (STING) bound to 3'3'-c-di-GMP, revealing two oligomeric states: spiral-shaped single filaments and fiber bundles composed of straight protofibrils. In spiral filaments, the STING domain sequesters the TIR domain's BB loop within a hydrophobic core, suppressing NADase activity. This inactive conformation is stabilized by interactions between the CBDα4 helix and the TIR domain, as well as a calcium-binding site. Conversely, fiber bundle formation-driven by inter-protofibril TIR domain interactions-disrupts these autoinhibitory contacts, liberating the BB loop to enable head-to-tail assembly of adjacent TIR domains into a composite NADase-active site. Calcium ions promote spiral filament assembly while inhibiting fiber bundles, revealing a dual regulatory role in tuning STING activation. Strikingly, this mechanism diverges from single-filament systems like STING, underscoring evolutionary diversity in STING signaling. Our findings establish distinct filament architectures as structural checkpoints governing bacterial STING activation, providing mechanistic insights into how conformational plasticity and environmental cues like calcium regulate abortive infection. These results highlight parallels between prokaryotic and eukaryotic immune strategies, emphasizing conserved principles in pathogen defense across domains of life.IMPORTANCEBacteria employ a sophisticated immune system, CBASS, evolutionarily related to human antiviral pathways, to defend against viral (phage) attacks. This study reveals how the bacterial protein STING acts as a molecular switch, transitioning between an inactive spiral structure stabilized by calcium ions and an active fiber bundle. When calcium levels drop, STING reorganizes into fiber bundles, activating its ability to degrade essential cellular molecules. This self-destructive mechanism halts phage replication by sacrificing the infected cell, protecting the bacterial population. The findings demonstrate how structural rearrangements govern life-or-death immune decisions, mirroring principles in human STING signaling. By uncovering calcium's role in regulating this process, the work deepens our understanding of microbial immunity and highlights shared strategies across domains of life. These insights could inspire novel antimicrobial therapies or bioengineered systems to combat infections, bridging fundamental science with practical applications in health and biotechnology.

摘要

基于环寡核苷酸的抗噬菌体信号系统(CBASS)是一种细菌免疫机制,在进化上与真核生物的cGAS-STING途径相关联,后者通过程序性细胞死亡来抵御噬菌体感染。CBASS操纵子编码环二核苷酸合酶(CD-NTases)和效应蛋白(Caps),如细菌STING,它能感知3'3'-c-di-GMP等环二核苷酸以触发防御反应。尽管细菌STING在配体结合后会寡聚形成细丝,但不同细丝状态的功能作用仍不清楚。在这里,我们解析了与3'3'-c-di-GMP结合的TIR-STING(STING)的冷冻电镜结构,揭示了两种寡聚状态:螺旋形单细丝和由直的原纤维组成的纤维束。在螺旋细丝中,STING结构域将TIR结构域的BB环隔离在疏水核心内,抑制NADase活性。这种无活性构象通过CBDα4螺旋与TIR结构域之间的相互作用以及一个钙结合位点得以稳定。相反,由原纤维间TIR结构域相互作用驱动的纤维束形成破坏了这些自抑制接触,释放出BB环,使相邻TIR结构域能够头对尾组装成一个复合NADase活性位点。钙离子促进螺旋细丝组装,同时抑制纤维束形成,揭示了其在调节STING激活方面的双重调节作用。引人注目的是,这种机制与STING等单细丝系统不同,突显了STING信号传导中的进化多样性。我们的研究结果确定了不同的细丝结构作为控制细菌STING激活的结构检查点,为构象可塑性和钙等环境线索如何调节程序性感染提供了机制性见解。这些结果突出了原核生物和真核生物免疫策略之间的相似之处,强调了生命各领域病原体防御中的保守原则。

重要性

细菌利用一种复杂的免疫系统CBASS,它在进化上与人类抗病毒途径相关,来抵御病毒(噬菌体)攻击。这项研究揭示了细菌蛋白STING如何作为一个分子开关,在由钙离子稳定的无活性螺旋结构和活性纤维束之间转变。当钙离子水平下降时,STING重新组织成纤维束,激活其降解必需细胞分子的能力。这种自我毁灭机制通过牺牲被感染的细胞来阻止噬菌体复制,从而保护细菌群体。这些发现展示了结构重排如何控制生死攸关的免疫决策,反映了人类STING信号传导中的原则。通过揭示钙在调节这一过程中的作用,这项工作加深了我们对微生物免疫的理解,并突出了生命各领域的共同策略。这些见解可能会激发新的抗菌疗法或生物工程系统来对抗感染,将基础科学与健康和生物技术的实际应用联系起来。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验