Suppr超能文献

计算结构优化增强IL13Rα2 - B7-H3串联嵌合抗原受体T细胞以克服抗原异质性介导的肿瘤逃逸。

Computational structural optimization enhances IL13Rα2 - B7-H3 tandem CAR T cells to overcome antigen-heterogeneity-mediated tumor escape.

作者信息

Meehl Michaela M, Immadisetty Kalyan, Trivedi Vikas D, Glowacki Pawel, Prinzing Brooke, Anido Alejandro Allo, Ibañez-Vega Jorge, Leslie Benjamin J, Babu M Madan, Krenciute Giedre

机构信息

Department of Bone Marrow Transplantation and Cellular Therapy (BMTCT), St. Jude Children's Research Hospital, Memphis, TN 38105, USA; College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA.

Department of Bone Marrow Transplantation and Cellular Therapy (BMTCT), St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Center of Excellence for Data Driven Discovery, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.

出版信息

Mol Ther. 2025 Aug 8. doi: 10.1016/j.ymthe.2025.07.044.

Abstract

Chimeric antigen receptor (CAR) T cell therapy is a highly effective treatment for multiple malignancies. However, one limitation is tumor antigen-heterogeneity and downregulation, which allows tumor cells to evade conventional, monospecific CAR T cells. One approach to overcome this tumor escape is by utilizing a tandem CAR recognizing two antigens. However, tandem CAR constructs often require optimization to achieve cell surface expression and function. Herein, we describe our process of designing an IL-13Rα2-B7-H3 tandem CAR. Interestingly, our original tandem CAR failed to express on the cell surface, leading to a systematic evaluation of 24 tandem constructs varying in their scFv positioning, linkers, and specific amino acids. We identified a "trouble region" in the CAR and optimized it using computational approaches, rescuing surface expression and improving function compared with monospecific CAR T cells. Further, the optimized tandem CAR T cells more effectively eliminated tumors than monospecific CAR T cells in vivo. Our study demonstrates the successful application of structure-guided computational strategies to restore surface expression and antitumor efficacy of an IL13Rα2 - B7-H3 tandem CAR. Our study also highlights the necessity of computational methods to guide the design of synthetic proteins, and that these methods can increase CAR T cell efficacy.

摘要

嵌合抗原受体(CAR)T细胞疗法是治疗多种恶性肿瘤的一种高效疗法。然而,一个局限性是肿瘤抗原的异质性和下调,这使得肿瘤细胞能够逃避传统的单特异性CAR T细胞。克服这种肿瘤逃逸的一种方法是利用识别两种抗原的串联CAR。然而,串联CAR构建体通常需要优化以实现细胞表面表达和功能。在此,我们描述了我们设计IL-13Rα2-B7-H3串联CAR的过程。有趣的是,我们最初的串联CAR未能在细胞表面表达,从而导致对24种在单链抗体片段(scFv)定位、接头和特定氨基酸方面存在差异的串联构建体进行系统评估。我们在CAR中识别出一个“问题区域”,并使用计算方法对其进行优化,与单特异性CAR T细胞相比,挽救了表面表达并改善了功能。此外,在体内,优化后的串联CAR T细胞比单特异性CAR T细胞更有效地消除了肿瘤。我们的研究证明了结构导向计算策略在恢复IL13Rα2 - B7-H3串联CAR的表面表达和抗肿瘤疗效方面的成功应用。我们的研究还强调了计算方法指导合成蛋白设计的必要性,并且这些方法可以提高CAR T细胞的疗效。

相似文献

2
In vitro machine learning-based CAR T immunological synapse quality measurements correlate with patient clinical outcomes.
PLoS Comput Biol. 2022 Mar 18;18(3):e1009883. doi: 10.1371/journal.pcbi.1009883. eCollection 2022 Mar.
4
B cell antigens: A key to optimizing CAR-T cell therapy.
Int Rev Immunol. 2025 Jun 19:1-28. doi: 10.1080/08830185.2025.2515839.
8
Chimeric antigen receptor (CAR) T-cell therapy for people with relapsed or refractory diffuse large B-cell lymphoma.
Cochrane Database Syst Rev. 2021 Sep 13;9(9):CD013365. doi: 10.1002/14651858.CD013365.pub2.
9
Study of combination CAR T-cell treatment for glioblastoma using mathematical modeling.
bioRxiv. 2025 Jun 8:2025.06.04.657886. doi: 10.1101/2025.06.04.657886.
10
B7-H3 and CSPG4 co-targeting as Pan-CAR-T cell treatment of triple-negative breast cancer.
J Immunother Cancer. 2025 May 26;13(5):e011533. doi: 10.1136/jitc-2025-011533.

本文引用的文献

1
Advances in CAR-T therapy for central nervous system tumors.
Biomark Res. 2024 Nov 6;12(1):132. doi: 10.1186/s40364-024-00679-6.
2
Antigen escape in CAR-T cell therapy: Mechanisms and overcoming strategies.
Biomed Pharmacother. 2024 Sep;178:117252. doi: 10.1016/j.biopha.2024.117252. Epub 2024 Aug 3.
3
Endogenous bystander killing mechanisms enhance the activity of novel FAP-specific CAR-T cells against glioblastoma.
Clin Transl Immunology. 2024 Jul 5;13(7):e1519. doi: 10.1002/cti2.1519. eCollection 2024.
4
Challenges and innovations in CAR-T cell therapy: a comprehensive analysis.
Front Oncol. 2024 Jun 11;14:1399544. doi: 10.3389/fonc.2024.1399544. eCollection 2024.
6
Intrathecal bivalent CAR T cells targeting EGFR and IL13Rα2 in recurrent glioblastoma: phase 1 trial interim results.
Nat Med. 2024 May;30(5):1320-1329. doi: 10.1038/s41591-024-02893-z. Epub 2024 Mar 13.
7
Locoregional delivery of IL-13Rα2-targeting CAR-T cells in recurrent high-grade glioma: a phase 1 trial.
Nat Med. 2024 Apr;30(4):1001-1012. doi: 10.1038/s41591-024-02875-1. Epub 2024 Mar 7.
8
Peptide-scFv antigen recognition domains effectively confer CAR T cell multiantigen specificity.
Cell Rep Med. 2024 Feb 20;5(2):101422. doi: 10.1016/j.xcrm.2024.101422. Epub 2024 Feb 12.
9
Enhanced efficacy of CD19/CD22 bispecific CAR-T cells with EAAAK linker on B-cell malignancies.
Eur J Haematol. 2024 Jan;112(1):64-74. doi: 10.1111/ejh.14090. Epub 2023 Sep 6.
10
From bench to bedside: the history and progress of CAR T cell therapy.
Front Immunol. 2023 May 15;14:1188049. doi: 10.3389/fimmu.2023.1188049. eCollection 2023.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验