Suppr超能文献

一种用于无创预测慢性乙型肝炎患者肝纤维化进展的机器学习模型。

A machine learning model for non-invasive prediction of advanced liver fibrosis in patients with chronic hepatitis B.

作者信息

Song Jingwei, Ma Ni, Aini Reziwanguli, Yang Yuqing

机构信息

School of Public Health, Xinjiang Medical University Urumqi 830017, Xinjiang, China.

People's Hospital of Xinjiang Uygur Autonomous Region Urumqi 830001, Xinjiang, China.

出版信息

Am J Transl Res. 2025 Jul 15;17(7):4939-4951. doi: 10.62347/KEVQ8263. eCollection 2025.

Abstract

PURPOSE

Chronic Hepatitis B (CHB) is a leading cause of liver fibrosis. Accurate and non-invasive diagnosis of liver fibrosis in CHB patients is of critical clinical importance. This study aimed to develop and validate machine learning (ML)-based models for predicting significant liver fibrosis in CHB patients.

METHODS

This retrospective cohort study included 328 CHB patients (225 with non-significant liver fibrosis and 103 with significant liver fibrosis) from 2017 to 2022. Four ML models were constructed based on four selected features identified through the least absolute shrinkage and selection operator (LASSO) regression. Model performance was assessed using the receiver operating characteristic (ROC) curve, and the area under the curve (AUC), accuracy, sensitivity, specificity, and SHapley Additive exPlanations (SHAP) analysis.

RESULTS

The random forest (RF) model demonstrated the highest predictive performance, with an AUC of 0.874 (95% CI: 0.813-0.934) in the training set and 0.863 (95% CI: 0.772-0.955) in the test set, outperforming extreme gradient boosting (XGBoost), logistic regression (LR), and support vector machine (SVM). Compared with the traditional fibrosis indices such as aspartate aminotransferase to platelet ratio index (APRI) (AUC = 0.585) and fibrosis-4 (FIB-4) (AUC = 0.633), the RF model (AUC = 0.863) demonstrated significantly higher predictive accuracy. SHAP analysis identified platelet count (PLT) as the most influential predictor in the RF model.

CONCLUSION

The ML-based RF model offers a highly accurate, non-invasive interpretable tool for predicting significant liver fibrosis in patients with CHB, offering potential for clinical application in routine fibrosis risk assessment.

摘要

目的

慢性乙型肝炎(CHB)是肝纤维化的主要病因。准确且无创地诊断CHB患者的肝纤维化具有至关重要的临床意义。本研究旨在开发并验证基于机器学习(ML)的模型,用于预测CHB患者的显著肝纤维化。

方法

这项回顾性队列研究纳入了2017年至2022年的328例CHB患者(225例无显著肝纤维化,103例有显著肝纤维化)。基于通过最小绝对收缩和选择算子(LASSO)回归确定的四个选定特征构建了四个ML模型。使用受试者工作特征(ROC)曲线、曲线下面积(AUC)、准确性、敏感性、特异性和SHapley加性解释(SHAP)分析来评估模型性能。

结果

随机森林(RF)模型表现出最高的预测性能,训练集的AUC为0.874(95%CI:0.813 - 0.934),测试集的AUC为0.863(95%CI:0.772 - 0.955),优于极端梯度提升(XGBoost)、逻辑回归(LR)和支持向量机(SVM)。与传统纤维化指标如天冬氨酸转氨酶与血小板比值指数(APRI)(AUC = 0.585)和纤维化-4(FIB-4)(AUC = 0.633)相比,RF模型(AUC = 0.863)显示出显著更高的预测准确性。SHAP分析确定血小板计数(PLT)是RF模型中最具影响力的预测因子。

结论

基于ML的RF模型为预测CHB患者的显著肝纤维化提供了一种高度准确、无创且可解释的工具,在常规纤维化风险评估的临床应用中具有潜力。

相似文献

1
A machine learning model for non-invasive prediction of advanced liver fibrosis in patients with chronic hepatitis B.
Am J Transl Res. 2025 Jul 15;17(7):4939-4951. doi: 10.62347/KEVQ8263. eCollection 2025.
3
Predicting the risk of lean non-alcoholic fatty liver disease based on interpretable machine models in a Chinese T2DM population.
Front Endocrinol (Lausanne). 2025 Jul 11;16:1626203. doi: 10.3389/fendo.2025.1626203. eCollection 2025.
4
Construction and validation of HBV-ACLF bacterial infection diagnosis model based on machine learning.
BMC Infect Dis. 2025 Jul 1;25(1):847. doi: 10.1186/s12879-025-11199-5.
7
A web-based prediction model for brain metastasis in non-small cell lung cancer patients.
Discov Oncol. 2025 Jul 29;16(1):1438. doi: 10.1007/s12672-025-03298-1.
8
Interpretable machine learning for predicting isolated basal septal hypertrophy.
PLoS One. 2025 Jun 30;20(6):e0325992. doi: 10.1371/journal.pone.0325992. eCollection 2025.

本文引用的文献

2
Progress and prospects of elastography techniques in the evaluation of fibrosis in chronic liver disease.
Arch Med Sci. 2024 Apr 14;20(6):1784-1792. doi: 10.5114/aoms/187079. eCollection 2024.
3
Machine learning-based plasma metabolomics for improved cirrhosis risk stratification.
BMC Gastroenterol. 2025 Feb 6;25(1):61. doi: 10.1186/s12876-025-03655-y.
4
A machine learning based algorithm accurately stages liver disease by quantification of arteries.
Sci Rep. 2025 Jan 24;15(1):3143. doi: 10.1038/s41598-025-87427-4.
8
Evaluation of hepatic injury in chronic hepatitis B and C using APRI and FIB-4 indices compared to fibroscan results.
Ann Med Surg (Lond). 2024 May 15;86(7):3841-3846. doi: 10.1097/MS9.0000000000002095. eCollection 2024 Jul.
10
Machine Learning-Based Models for Advanced Fibrosis and Cirrhosis Diagnosis in Chronic Hepatitis B Patients With Hepatic Steatosis.
Clin Gastroenterol Hepatol. 2024 Nov;22(11):2250-2260.e12. doi: 10.1016/j.cgh.2024.06.014. Epub 2024 Jun 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验