Suppr超能文献

改善外周区PI-RADS 3+1病变的风险分层:术语专家词典、多读者表现及人工智能的贡献

Improving risk stratification of PI-RADS 3 + 1 lesions of the peripheral zone: expert lexicon of terms, multi-reader performance and contribution of artificial intelligence.

作者信息

A Glemser Philip, Netzer Nils, H Ziener Christian, Wilhelm Markus, Hielscher Thomas, Sun Zhang Kevin, Görtz Magdalena, Schütz Viktoria, Stenzinger Albrecht, Hohenfellner Markus, Schlemmer Heinz-Peter, Bonekamp David

机构信息

Division of Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.

Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.

出版信息

Cancer Imaging. 2025 Aug 19;25(1):102. doi: 10.1186/s40644-025-00916-7.

Abstract

BACKGROUND

According to PI-RADS v2.1, peripheral PI-RADS 3 lesions are upgraded to PI-RADS 4 if dynamic contrast-enhanced MRI is positive (3+1 lesions), however those lesions are radiologically challenging. We aimed to define criteria by expert consensus and test applicability by other radiologists for sPC prediction of PI-RADS 3+1 lesions and determine their value in integrated regression models.

METHODS

From consecutive 3 Tesla MR examinations performed between 08/2016 to 12/2018 we identified 85 MRI examinations from 83 patients with a total of 94 PI-RADS 3+1 lesions in the official clinical report. Lesions were retrospectively assessed by expert consensus with construction of a newly devised feature catalogue which was utilized subsequently by two additional radiologists specialized in prostate MRI for independent lesion assessment. With reference to extended fused targeted and systematic TRUS/MRI-biopsy histopathological correlation, relevant catalogue features were identified by univariate analysis and put into context to typically available clinical features and automated AI image assessment utilizing lasso-penalized logistic regression models, also focusing on the contribution of DCE imaging (feature-based, bi- and multiparametric AI-enhanced and solely bi- and multiparametric AI-driven).

RESULTS

The feature catalog enabled image-based lesional risk stratification for all readers. Expert consensus provided 3 significant features in univariate analysis (adj. p-value <0.05; most relevant feature T2w configuration: "irregular/microlobulated/spiculated", OR 9.0 (95%CI 2.3-44.3); adj. p-value: 0.016). These remained after lasso penalized regression based feature reduction, while the only selected clinical feature was prostate volume (OR<1), enabling nomogram construction. While DCE-derived consensus features did not enhance model performance (bootstrapped AUC), there was a trend for increased performance by including multiparametric AI, but not biparametric AI into models, both for combined and AI-only models.

CONCLUSIONS

PI-RADS 3+1 lesions can be risk-stratified using lexicon terms and a key feature nomogram. AI potentially benefits more from DCE imaging than experienced prostate radiologists.

CLINICAL TRIAL NUMBER

Not applicable.

摘要

背景

根据PI-RADS v2.1,如果动态对比增强MRI呈阳性(3+1病变),外周PI-RADS 3类病变会升级为PI-RADS 4类,然而这些病变在放射学上具有挑战性。我们旨在通过专家共识确定标准,并由其他放射科医生测试其在PI-RADS 3+1病变的前列腺癌(sPC)预测中的适用性,并确定它们在综合回归模型中的价值。

方法

从2016年8月至2018年12月期间连续进行的3特斯拉磁共振检查中,我们在官方临床报告中确定了83例患者的85次磁共振检查,共有94个PI-RADS 3+1病变。通过专家共识对病变进行回顾性评估,并构建一个新设计的特征目录,随后由另外两名专门从事前列腺MRI的放射科医生利用该目录进行独立的病变评估。参照扩展融合靶向和系统性经直肠超声/磁共振活检组织病理学相关性分析结果,通过单变量分析确定相关目录特征,并将其与通常可用的临床特征以及利用套索惩罚逻辑回归模型的自动人工智能图像评估相结合,同时也关注动态对比增强成像(基于特征、双参数和多参数人工智能增强以及仅双参数和多参数人工智能驱动)的贡献。

结果

该特征目录能够为所有读者实现基于图像的病变风险分层。专家共识在单变量分析中提供了3个显著特征(校正p值<0.05;最相关特征T2加权图像形态:“不规则/微叶状/毛刺状”,比值比9.0(95%置信区间2.3-44.3);校正p值:0.016)。经过基于套索惩罚回归的特征约简后,这些特征仍然存在,而唯一选定的临床特征是前列腺体积(比值比<1),从而能够构建列线图。虽然动态对比增强成像得出的共识特征并未提高模型性能(自助法受试者工作特征曲线下面积),但对于联合模型和仅人工智能模型而言,将多参数人工智能而非双参数人工智能纳入模型有性能提高的趋势。

结论

PI-RADS 3+1病变可使用术语词典和关键特征列线图进行风险分层。与经验丰富的前列腺放射科医生相比,人工智能可能从动态对比增强成像中获益更多。

临床试验编号

不适用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验