Suppr超能文献

一种用于上尿路尿路上皮癌预后预测的多数据融合深度学习模型。

A multi-data fusion deep learning model for prognostic prediction in upper tract urothelial carcinoma.

作者信息

Sun Hongdi, Chen Siping, Bao Yongxing, You Fengyan, Zhu Honghui, Yao Xin, Chen Lianguo, Miao Jiangwei, Shao Fanggui, Gao Xiaomin, Lin Binwei

机构信息

Department of Hematology, The Third Clinical Institute Affiliated to Wenzhou Medical University (Wenzhou People's Hospital), Wenzhou, Zhejiang, China.

Department of Urology, Rui'an People's Hospital, The Third Affiliated Hospital of the Wenzhou Medical University, Wenzhou, Zhejiang, China.

出版信息

Front Oncol. 2025 Aug 6;15:1644250. doi: 10.3389/fonc.2025.1644250. eCollection 2025.

Abstract

BACKGROUND

Upper tract urothelial carcinoma (UTUC) is a rare but highly invasive urinary malignancy with a high postoperative recurrence rate.

METHODS

We retrospectively collected data from 133 UTUC patients who underwent radical nephroureterectomy between 2005 and 2017. Patients were divided into a training set (n=103) and a testing set (n=30). A multi-modal deep learning model named Multi-modal Image-Clinical Combination Classifier (MICC) was developed by integrating multi-phase contrast-enhanced CT imaging and clinical data. The model's prognostic performance was compared with two unimodal models-ImageNet (CT-based) and ClinicalNet (clinical data-based)-and traditional clinical parameters including pathological T stage. Feature importance was evaluated using SHapley Additive exPlanations (SHAP).

RESULTS

The MICC model achieved superior prognostic accuracy with AUCs of 0.918 and 0.895 in the training and testing sets, respectively, outperforming unimodal models. Classification metrics were robust, with accuracy of 0.854, sensitivity of 0.889, specificity of 0.836, negative predictive value (NPV) of 0.933, and positive predictive value (PPV) of 0.744. Precision-recall analysis confirmed strong identification of high-risk patients despite dataset imbalance. SHAP analysis highlighted that CT imaging features contributed most significantly to the model's predictions.

CONCLUSION

Integrating multi-phase CT imaging with clinical data, the MICC model provides accurate prognostic prediction for UTUC patients. This approach has potential to assist clinicians in personalized risk stratification and treatment planning, ultimately improving patient outcomes.

摘要

背景

上尿路尿路上皮癌(UTUC)是一种罕见但侵袭性很强的泌尿系统恶性肿瘤,术后复发率很高。

方法

我们回顾性收集了2005年至2017年间接受根治性肾输尿管切除术的133例UTUC患者的数据。患者被分为训练集(n = 103)和测试集(n = 30)。通过整合多期对比增强CT成像和临床数据,开发了一种名为多模态图像-临床联合分类器(MICC)的多模态深度学习模型。将该模型的预后性能与两个单模态模型——基于CT的ImageNet和基于临床数据的ClinicalNet——以及包括病理T分期在内的传统临床参数进行比较。使用SHapley加法解释(SHAP)评估特征重要性。

结果

MICC模型在训练集和测试集中分别实现了0.918和0.895的AUC,具有卓越的预后准确性,优于单模态模型。分类指标稳健,准确率为0.854,灵敏度为0.889,特异性为0.836,阴性预测值(NPV)为0.933,阳性预测值(PPV)为0.744。精确召回分析证实,尽管数据集不平衡,但该模型对高危患者有很强的识别能力。SHAP分析强调,CT成像特征对模型预测的贡献最为显著。

结论

通过将多期CT成像与临床数据相结合,MICC模型为UTUC患者提供了准确的预后预测。这种方法有潜力协助临床医生进行个性化风险分层和治疗规划,最终改善患者预后。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/763e/12364636/cce0895d312a/fonc-15-1644250-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验