Zhang Honglei, Ma Jingxuan, Pan Fulu, Liu Yangjian, Zhang Man, Li Yuqing, Zhang Chao, Huang Huajie, Zhang Wannian, Xiu Donghui, Zhang Wei, Song Gengshen
Beijing Youcare Kechuang Pharmaceutical Technology Co., Ltd, Beijing, China.
J Mater Chem B. 2025 Aug 26. doi: 10.1039/d5tb01217a.
Messenger RNA (mRNA) therapeutics hold significant potential across a wide range of medical applications. LNPs are the most clinically advanced mRNA delivery vehicles, but challenges such as off-target effects and liver accumulation limit their broader clinical use. While high-throughput screening is effective for identifying more efficient and selective ionizable lipids, the substantial experimental validation required limits its practical application. In this study, we developed a deep learning model to accelerate ionizable lipid optimization by virtually predicting high-performing ionizable cationic lipids. After applying this model to a series of bis-hydroxyethylamine derived lipids (BDLs), 24 promising candidates were synthesized for delivery efficiency and organ-selectivity validation. Among them, YK-407 exhibited superior transfection efficiency and organ-specific mRNA delivery. YK-407 LNPs predominantly targeted the spleen, particularly antigen-presenting cells (APCs). In a mouse OVA tumor model, YK-407 LNPs encapsulating OVA-mRNA almost completely inhibited tumor growth and induced a robust cytotoxic CD8 T cell response in the spleen, outperforming clinically approved SM-102 and Dlin-MC3-DMA. Additionally, we demonstrated that YK-407 LNPs exhibited minimal toxicity for both the liver and spleen, with no significant inflammatory cytokine release. These findings highlight the potential of AI in LNP development and YK-407 holds great promise for applications in mRNA-based treatments.
信使核糖核酸(mRNA)疗法在广泛的医学应用中具有巨大潜力。脂质纳米颗粒(LNPs)是临床上最先进的mRNA递送载体,但诸如脱靶效应和肝脏蓄积等挑战限制了它们更广泛的临床应用。虽然高通量筛选对于识别更高效、更具选择性的可电离脂质很有效,但所需的大量实验验证限制了其实际应用。在本研究中,我们开发了一种深度学习模型,通过虚拟预测高性能的可电离阳离子脂质来加速可电离脂质的优化。将该模型应用于一系列双羟乙胺衍生脂质(BDLs)后,合成了24种有前景的候选物用于递送效率和器官选择性验证。其中,YK-407表现出卓越的转染效率和器官特异性mRNA递送能力。YK-407脂质纳米颗粒主要靶向脾脏,尤其是抗原呈递细胞(APC)。在小鼠OVA肿瘤模型中,包裹OVA-mRNA的YK-407脂质纳米颗粒几乎完全抑制了肿瘤生长,并在脾脏中诱导了强烈的细胞毒性CD8 T细胞反应,优于临床批准的SM-102和Dlin-MC3-DMA。此外,我们证明YK-407脂质纳米颗粒对肝脏和脾脏的毒性极小,且无明显炎性细胞因子释放。这些发现凸显了人工智能在脂质纳米颗粒开发中的潜力,YK-407在基于mRNA的治疗应用中极具前景。