Suppr超能文献

TIGR-Tas与RNA引导的基因组编辑系统的扩展宇宙:超越CRISPR-Cas的新时代。

TIGR-Tas and the Expanding Universe of RNA-Guided Genome Editing Systems: A New Era Beyond CRISPR-Cas.

作者信息

Ruden Douglas M

机构信息

Department of Obstetrics and Gynecology, C. S. Mott Center for Human Growth and Development, Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48201, USA.

出版信息

Genes (Basel). 2025 Jul 28;16(8):896. doi: 10.3390/genes16080896.

Abstract

The recent discovery of TIGR-Tas (Tandem Interspaced Guide RNA-Targeting Systems) marks a major advance in the field of genome editing, introducing a new class of compact, programmable DNA-targeting systems that function independently of traditional CRISPR-Cas pathways. TIGR-Tas effectors use a novel dual-spacer guide RNA (tigRNA) to recognize both strands of target DNA without requiring a protospacer adjacent motif (PAM). These Tas proteins introduce double-stranded DNA cuts with characteristic 8-nucleotide 3' overhangs and are significantly smaller than Cas9, offering delivery advantages for in vivo editing. Structural analyses reveal homology to box C/D snoRNP proteins, suggesting a previously unrecognized evolutionary lineage of RNA-guided nucleases. This review positions TIGR-Tas at the forefront of a new wave of RNA-programmable genome-editing technologies. In parallel, I provide comparative insight into the diverse and increasingly modular CRISPR-Cas systems, including Cas9, Cas12, Cas13, and emerging effectors like Cas3, Cas10, CasΦ, and Cas14. While the CRISPR-Cas universe has revolutionized molecular biology, TIGR-Tas systems open a complementary and potentially more versatile path for programmable genome manipulation. I discuss mechanistic distinctions, evolutionary implications, and potential applications in human cells, synthetic biology, and therapeutic genome engineering.

摘要

TIGR-Tas(串联间隔引导RNA靶向系统)的最新发现标志着基因组编辑领域的一项重大进展,引入了一类新型的紧凑、可编程的DNA靶向系统,其功能独立于传统的CRISPR-Cas途径。TIGR-Tas效应器使用一种新型的双间隔引导RNA(tigRNA)来识别目标DNA的两条链,而无需原间隔相邻基序(PAM)。这些Tas蛋白会引入具有特征性8个核苷酸3'突出端的双链DNA切割,并且比Cas9小得多,为体内编辑提供了递送优势。结构分析揭示了与盒C/D snoRNP蛋白的同源性,表明存在一种以前未被认识的RNA引导核酸酶的进化谱系。这篇综述将TIGR-Tas置于新一轮RNA可编程基因组编辑技术的前沿。同时,我对包括Cas9、Cas12、Cas13以及如Cas3、Cas10、CasΦ和Cas14等新兴效应器在内的多样且日益模块化的CRISPR-Cas系统提供了比较性见解。虽然CRISPR-Cas领域已经彻底改变了分子生物学,但TIGR-Tas系统为可编程基因组操作开辟了一条互补且可能更具通用性的途径。我讨论了其机制差异、进化意义以及在人类细胞、合成生物学和治疗性基因组工程中的潜在应用。

相似文献

2
Artificial Intelligence in CRISPR-Cas Systems: A Review of Tool Applications.
Methods Mol Biol. 2025;2952:243-257. doi: 10.1007/978-1-0716-4690-8_14.
3
Mechanisms and engineering of a miniature type V-N CRISPR-Cas12 effector enzyme.
Nat Commun. 2025 Jul 1;16(1):5667. doi: 10.1038/s41467-025-61290-3.
4
Introducing a Spectrum of Long-Range Genomic Deletions in Human Embryonic Stem Cells Using Type I CRISPR-Cas.
Mol Cell. 2019 Jun 6;74(5):936-950.e5. doi: 10.1016/j.molcel.2019.03.014. Epub 2019 Apr 8.
5
Rapid two-step target capture ensures efficient CRISPR-Cas9-guided genome editing.
Mol Cell. 2025 May 1;85(9):1730-1742.e9. doi: 10.1016/j.molcel.2025.03.024. Epub 2025 Apr 23.
6
Versatile and efficient mammalian genome editing with Type I-C CRISPR System of Desulfovibrio vulgaris.
Sci China Life Sci. 2024 Nov;67(11):2471-2487. doi: 10.1007/s11427-023-2682-5. Epub 2024 Aug 7.
8
Evolution of Prime Editing Systems: Move Forward to the Treatment of Hereditary Diseases.
Curr Gene Ther. 2024;25(1):46-61. doi: 10.2174/0115665232295117240405070809.
9
CRISPR beyond: harnessing compact RNA-guided endonucleases for enhanced genome editing.
Sci China Life Sci. 2024 Dec;67(12):2563-2574. doi: 10.1007/s11427-023-2566-8. Epub 2024 Jul 12.
10
Target-dependent nickase activities of the CRISPR-Cas nucleases Cpf1 and Cas9.
Nat Microbiol. 2019 May;4(5):888-897. doi: 10.1038/s41564-019-0382-0. Epub 2019 Mar 4.

本文引用的文献

1
Engineered Cas12j-8 is a Versatile Platform for Multiplexed Genome Modulation in Mammalian Cells.
Adv Sci (Weinh). 2025 Sep;12(33):e02593. doi: 10.1002/advs.202502593. Epub 2025 Jun 10.
2
SHERLOCK, a novel CRISPR-Cas13a-based assay for detection of infectious bursal disease virus.
J Virol Methods. 2025 Sep;337:115185. doi: 10.1016/j.jviromet.2025.115185. Epub 2025 May 12.
4
Accelerating Cleavage Activity of CRISPR-Cas13 System on a Microfluidic Chip for Rapid Detection of RNA.
Anal Chem. 2025 May 13;97(18):9858-9865. doi: 10.1021/acs.analchem.5c00256. Epub 2025 Apr 30.
5
CRISPR/Cas9-Based therapeutics as a promising strategy for management of Alzheimer's disease: progress and prospects.
Front Cell Neurosci. 2025 Apr 7;19:1578138. doi: 10.3389/fncel.2025.1578138. eCollection 2025.
6
Real-time imaging of bacterial colony growth dynamics for cells with Type IV-A1 CRISPR-Cas activity.
Microlife. 2025 Apr 1;6:uqaf006. doi: 10.1093/femsml/uqaf006. eCollection 2025.
7
CASCADE-Cas3 enables highly efficient genome engineering in Streptomyces species.
Nucleic Acids Res. 2025 Mar 20;53(6). doi: 10.1093/nar/gkaf214.
8
Whole-genome CRISPR-Cas9 knockout screens identify SHOC2 as a genetic dependency in NRAS-mutant melanoma.
Cancer Commun (Lond). 2025 Jun;45(6):709-713. doi: 10.1002/cac2.70013. Epub 2025 Mar 17.
9
Cas10 based 7SL-sRNA diagnostic for the detection of active trypanosomosis.
PLoS Negl Trop Dis. 2025 Mar 17;19(3):e0012937. doi: 10.1371/journal.pntd.0012937. eCollection 2025 Mar.
10
Cyanobacterial type I CRISPR-Cas systems: distribution, mechanisms, and genome editing applications.
Front Bioeng Biotechnol. 2025 Feb 27;13:1552030. doi: 10.3389/fbioe.2025.1552030. eCollection 2025.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验