Suppr超能文献

机器学习攀登光电特性的雅各布天梯。

Machine learning climbs the Jacob's Ladder of optoelectronic properties.

作者信息

Grunert Malte, Großmann Max, Runge Erich

机构信息

Institute of Physics and Institute of Micro- and Nanotechnologies, Technische Universität Ilmenau, Ilmenau, Germany.

出版信息

Nat Commun. 2025 Aug 31;16(1):8142. doi: 10.1038/s41467-025-63355-9.

Abstract

The use of machine learning (ML) as a powerful tool for the prediction of optoelectronic properties is still hampered by the inadequate level of the calculated training datasets, which are almost exclusively obtained within the independent-particle approximation (IPA). Drawing on Perdew's Jacob's ladder analogy in density functional theory, we demonstrate how ML can ascend from the IPA to the random phase approximation (RPA), figuratively climbing the second rung. We show that as few as 300 RPA calculations suffice to fine-tune a graph attention network initially trained on 10,000 IPA calculations. Its prediction accuracy approaches that of a network directly trained on our large database of around 6000 RPA spectra. Our results highlight how transfer learning even with a small amount of high-fidelity data significantly improves predicted optical properties. Moreover, by retraining on RPA data from materials with smaller unit cells, the model generalizes effectively to larger unit cells, demonstrating broad scalability.

摘要

机器学习(ML)作为预测光电特性的强大工具,其应用仍受到计算训练数据集水平不足的阻碍,这些数据集几乎完全是在独立粒子近似(IPA)范围内获得的。借鉴密度泛函理论中佩德韦的雅各布天梯类比,我们展示了机器学习如何从IPA提升到随机相位近似(RPA),形象地说就是爬上了第二个阶梯。我们表明,只需300次RPA计算就足以对最初在10000次IPA计算上训练的图注意力网络进行微调。其预测精度接近直接在我们大约6000个RPA光谱的大型数据库上训练的网络。我们的结果突出了即使使用少量高保真数据的迁移学习也能显著改善预测的光学特性。此外,通过对来自较小晶胞材料的RPA数据进行再训练,该模型有效地推广到了更大的晶胞,展示了广泛的可扩展性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b9a/12398487/63513bfd223e/41467_2025_63355_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验