Suppr超能文献

单细胞测序分析和多种机器学习方法确定免疫相关的丝氨酸蛋白酶抑制剂B1(SERPINB1)和细胞质聚腺苷酸化元件结合蛋白4(CPEB4)作为新冠病毒诱导的急性呼吸窘迫综合征(ARDS)的新型生物标志物。

Single-cell sequencing analysis and multiple machine learning methods identified immune-associated SERPINB1 and CPEB4 as novel biomarkers for COVID-19-induced ARDS.

作者信息

Yang Hua, Wang Wenjing, Huang Junnan, Yan Yan, Wang Shan, Shen Qianran, Li Jingjie, Jin Tianbo

机构信息

The College of Life Sciences, Northwest University, #229 TaiBai North Road, Xi'an, 710069, China.

出版信息

Naturwissenschaften. 2025 Sep 2;112(5):64. doi: 10.1007/s00114-025-02016-9.

Abstract

Acute respiratory distress syndrome (ARDS) is a life-threatening complication of COVID-19, often resulting in respiratory failure and high mortality. Identifying effective molecular biomarkers is crucial for understanding its pathogenesis and improving diagnosis and treatment strategies. We analyzed transcriptomic and single-cell RNA-seq data from public datasets (GSE172114, GSE149878, and GSE213313). Differentially expressed genes (DEGs) were identified using the limma package and weighted gene co-expression network analysis (WGCNA). Single-cell analysis was used to define cell-type-specific expression. Three machine learning algorithms-LASSO, SVM-RFE, and Random Forest-were applied to identify robust hub genes. External dataset GSE213313 was used for validation. CIBERSORT was applied to estimate immune cell infiltration in ARDS tissues. We identified 915 DEGs between COVID-19-induced ARDS and controls, mainly enriched in immune receptor activity and cytokine signaling. Through integrative machine learning and validation, SERPINB1 and CPEB4 were identified as key genes, with strong diagnostic performance (AUCs: 0.940 and 0.948, respectively). Immune infiltration analysis revealed that both genes were highly correlated with neutrophils, and also associated with B memory cells, T cells, NK cells, monocytes, and mast cells. GSEA showed these genes were involved in immune and inflammatory pathways, indicating functional relevance in ARDS. SERPINB1 and CPEB4 were identified as novel immune-related biomarkers for COVID-19-induced ARDS. Their strong association with neutrophil infiltration suggests that they may play critical roles in disease progression. These findings provide new insights into immune mechanisms and offer promising targets for early diagnosis and therapeutic intervention in ARDS.

摘要

急性呼吸窘迫综合征(ARDS)是新型冠状病毒肺炎(COVID-19)的一种危及生命的并发症,常导致呼吸衰竭和高死亡率。识别有效的分子生物标志物对于理解其发病机制以及改善诊断和治疗策略至关重要。我们分析了来自公共数据集(GSE172114、GSE149878和GSE213313)的转录组和单细胞RNA测序数据。使用limma软件包和加权基因共表达网络分析(WGCNA)来识别差异表达基因(DEG)。单细胞分析用于定义细胞类型特异性表达。应用三种机器学习算法——套索回归(LASSO)、支持向量机递归特征消除(SVM-RFE)和随机森林——来识别稳健的核心基因。使用外部数据集GSE213313进行验证。应用CIBERSORT来估计ARDS组织中的免疫细胞浸润。我们确定了COVID-19诱导的ARDS与对照组之间的915个DEG,主要富集于免疫受体活性和细胞因子信号传导。通过综合机器学习和验证,丝氨酸蛋白酶抑制剂B1(SERPINB1)和细胞质聚腺苷酸化元件结合蛋白4(CPEB4)被确定为关键基因,具有很强的诊断性能(曲线下面积分别为0.940和0.948)。免疫浸润分析表明,这两个基因均与中性粒细胞高度相关,也与B记忆细胞、T细胞、自然杀伤(NK)细胞、单核细胞和肥大细胞相关。基因集富集分析(GSEA)表明这些基因参与免疫和炎症途径,表明其在ARDS中的功能相关性。SERPINB1和CPEB4被确定为COVID-19诱导的ARDS的新型免疫相关生物标志物。它们与中性粒细胞浸润的强关联表明它们可能在疾病进展中起关键作用。这些发现为免疫机制提供了新的见解,并为ARDS的早期诊断和治疗干预提供了有前景的靶点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验