Suppr超能文献

AI-NLME:一种用于分析随机安慰剂对照临床试验中纵向数据的新型人工智能驱动的非线性混合效应建模方法。

AI-NLME: A New Artificial Intelligence-Driven Nonlinear Mixed Effect Modeling Approach for Analyzing Longitudinal Data in Randomized Placebo-Controlled Clinical Trials.

作者信息

Gomeni Roberto, Bressolle-Gomeni Françoise

机构信息

Pharmacometrica, La Fouillade, France.

出版信息

Clin Transl Sci. 2025 Sep;18(9):e70345. doi: 10.1111/cts.70345.

Abstract

A propensity weighted (PSW) methodology was recently proposed for assessing the treatment effect conditional to the probability of non-specific response to a treatment (prob-NSRT). Prob-NSRT was estimated using an artificial neural network (ANN) model applied to pre-randomization and study endpoint observations in a placebo arm of a placebo-controlled clinical trial. Placebo data were initially used to estimate prob-NSRT, then the ANN model was applied to the data of each individual in each treatment arm (placebo + active) for estimating the individual prob-NSRT, and finally all data in the trial enriched by the prob-NSRT values were used to assess the treatment effect. One of the major limitations of this methodology was that the ANN model was developed and applied to analyze data in the same dataset. To overcome this limitation, a new artificial intelligence driven nonlinear mixed effect modeling approach (AI-NLME) is proposed. This approach involves the development of the ANN model using a dataset that is independent from the dataset used to estimate the treatment effect. A case study is presented using data from a randomized, placebo-controlled trial in major depressive disorders. The AI-NLME approach provided an effective tool for controlling the confounding effect of treatment non-specific response, for increasing signal detection, for decreasing heterogeneity in the response, for increasing the effect size, for better assessing the responder rate, and for providing a reliable estimate of the "true" treatment effect. These findings provide convergent evidence on the potential role of AI-NLME to become the reference approach for analyzing placebo-controlled clinical trials.

摘要

最近提出了一种倾向加权(PSW)方法,用于评估在对治疗产生非特异性反应的概率(prob-NSRT)条件下的治疗效果。使用人工神经网络(ANN)模型估计prob-NSRT,该模型应用于安慰剂对照临床试验安慰剂组的随机分组前和研究终点观察数据。最初使用安慰剂数据估计prob-NSRT,然后将ANN模型应用于每个治疗组(安慰剂+活性药物)中每个个体的数据,以估计个体的prob-NSRT,最后,用prob-NSRT值丰富后的试验中的所有数据用于评估治疗效果。该方法的一个主要局限性在于,ANN模型是在同一数据集中开发并应用于分析数据的。为克服这一局限性,提出了一种新的人工智能驱动的非线性混合效应建模方法(AI-NLME)。该方法包括使用一个独立于用于估计治疗效果的数据集来开发ANN模型。本文使用一项针对重度抑郁症的随机、安慰剂对照试验的数据进行了案例研究。AI-NLME方法为控制治疗非特异性反应的混杂效应、增加信号检测、降低反应异质性、增加效应量、更好地评估反应率以及提供“真实”治疗效果的可靠估计提供了一个有效工具。这些发现为AI-NLME成为分析安慰剂对照临床试验的参考方法的潜在作用提供了趋同证据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed45/12405737/8af124dc2f89/CTS-18-e70345-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验