González-Núñez Sofía, Sumer Zeynep, Amador Carlos, Madhav Prakash, Muralidharan Ajay, Adjiman Claire S, Martín Mariano
Departamento de Ingeniería Química, Universidad de Salamanca, Pza. Caídos 1-5, Salamanca 37008, Spain.
Department of Chemical Engineering, Sargent Centre for Process Systems Engineering, Institute for Molecular Science and Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom.
ACS Sustain Chem Eng. 2025 Aug 20;13(34):13808-13824. doi: 10.1021/acssuschemeng.5c04112. eCollection 2025 Sep 1.
The industrial applications of surfactant solutions are both numerous and extremely diverse, demonstrating the importance of these systems in everyday life and driving the need for a systematic approach to designing sustainable surfactant molecules adapted to the specific requirements of each application. Given the very large space of possible molecules, the identification of candidate surfactants that achieve a balance between the optimal physicochemical properties of the product and minimal environmental and health impacts is extremely challenging. In this work, a formulation and solution framework based on Computer-Aided Molecular Design is proposed for surfactant design. A novel multistage methodology is developed based on the initial generation of promising candidates for the two constituents of a surfactant, the hydrophilic head and the hydrophobic tail, followed by the multiobjective optimization of surfactant molecules. This decomposition results in an effective solution strategy. In addition to constraints that ensure the generation of feasible molecules, specific structural constraints can be incorporated in the formulation, accelerating the discovery and optimization process. Data-driven predictive models for the most relevant surfactant properties, such as critical micelle concentration, Krafft point, surface tension, toxicity, and biodegradability, are developed and implemented in the optimization formulation. Two case studies are tackled, successfully generating novel surfactant molecules. The proposed framework could be extended to more complex structures, such as two-headed or Gemini surfactants.
表面活性剂溶液的工业应用既广泛又极其多样,这表明了这些体系在日常生活中的重要性,并推动了对设计适用于每种应用特定要求的可持续表面活性剂分子的系统方法的需求。鉴于可能的分子空间非常大,识别出在产品的最佳物理化学性质与最小环境和健康影响之间取得平衡的候选表面活性剂极具挑战性。在这项工作中,提出了一种基于计算机辅助分子设计的配方和解决方案框架用于表面活性剂设计。开发了一种新颖的多阶段方法,该方法基于最初生成表面活性剂的两种成分(亲水头部和疏水尾部)的有前景的候选物,然后对表面活性剂分子进行多目标优化。这种分解产生了一种有效的解决方案策略。除了确保生成可行分子的约束条件外,还可以在配方中纳入特定的结构约束,从而加速发现和优化过程。针对最相关的表面活性剂性质,如临界胶束浓度、克拉夫特点(Krafft点)、表面张力、毒性和生物降解性,开发了数据驱动的预测模型,并将其应用于优化配方中。处理了两个案例研究,成功生成了新型表面活性剂分子。所提出的框架可以扩展到更复杂的结构,如双头或双子表面活性剂。