Zhang Yuang, Davis Ryan, Biswas Saptarshi, Miller Sarah E, Raza Ur Rehman Syed, Felix Gene T, Gaharwar Akhilesh K
Department of Materials Science and Engineering, College of Engineering, Texas A&M University, College Station, Texas 77843, United States.
Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas 77843, United States.
ACS Appl Mater Interfaces. 2025 Sep 17;17(37):51605-51619. doi: 10.1021/acsami.5c09635. Epub 2025 Sep 8.
Hydrogel-based bioinks are widely adopted in digital light processing (DLP) 3D printing. Modulating their mechanical properties is especially beneficial in biomedical applications, such as directing cell activity toward tissue regeneration and healing. However, in both monolithic and granular hydrogels, the tunability of mechanical properties is limited to parameters such as cross-linking or packing density. Herein, we present a bioink platform with multiscale heterogeneity for DLP printing, fabricated by incorporating microgels within a cross-linked polymer matrix to form a mechanically tunable heterogeneous hydrogel composite. The properties of the separate components as well as their interactions can be efficiently tailored from both chemical and physical perspectives, enabling control across both nano and micro scales. Monodisperse, spherical gelatin methacryloyl (GelMA) microgels with a stiffness that can be tuned through polymer concentration or cross-link density are fabricated by a high-throughput microfluidic device. Microgels that have been precross-linked through chemical or physical methods are then embedded in a continuous GelMA matrix, where they influence the biomechanical and biochemical characteristics of composites through particle density and encapsulation of cells. Modulation of microgel volume and selecting different printing parameters enables tailoring of the composite compressive modulus across a range of 29 to 244 kPa. Using this composite hydrogel platform as a DLP ink allows for the fabrication of complex 3D structures with macroscale heterogeneity, providing the potential to mimic tissue- and organ-level complexity. This study presents a unique approach to designing heterogeneous hydrogel composites with tunable properties at the nano-, micro-, and macro-scales, and introduces a highly modular hydrogel platform for DLP 3D printing.
基于水凝胶的生物墨水在数字光处理(DLP)3D打印中被广泛采用。调节其机械性能在生物医学应用中特别有益,例如引导细胞活动以促进组织再生和愈合。然而,在整体式和颗粒状水凝胶中,机械性能的可调性仅限于交联或堆积密度等参数。在此,我们提出了一种用于DLP打印的具有多尺度异质性的生物墨水平台,通过将微凝胶掺入交联聚合物基质中制成机械可调的异质水凝胶复合材料。可以从化学和物理角度有效地调整各单独组分的性质及其相互作用,从而实现纳米和微米尺度的控制。通过高通量微流控装置制备具有单分散球形结构的甲基丙烯酰化明胶(GelMA)微凝胶,其刚度可通过聚合物浓度或交联密度进行调节。然后将通过化学或物理方法预交联的微凝胶嵌入连续的GelMA基质中,在其中它们通过颗粒密度和细胞包封影响复合材料的生物力学和生化特性。调节微凝胶体积并选择不同的打印参数能够在29至244 kPa的范围内定制复合材料的压缩模量。使用这种复合水凝胶平台作为DLP墨水可以制造具有宏观尺度异质性的复杂3D结构,为模拟组织和器官水平的复杂性提供了可能性。本研究提出了一种独特的方法来设计在纳米、微米和宏观尺度上具有可调性质的异质水凝胶复合材料,并引入了一种用于DLP 3D打印的高度模块化水凝胶平台。