Suppr超能文献

确定牙周炎的潜在治疗靶点:一种整合批量和单细胞RNA测序与孟德尔随机化的多组学方法。

Identifying potential therapeutic targets in periodontitis: a multi-omics approach integrating bulk and single-cell RNA sequencing with Mendelian randomization.

作者信息

Zhou Hang, Chen Rouyi, Deng Zhennan, Li Sen

机构信息

School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China.

The 1st School of Medicine, School of Information and Engineering, The 1st Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.

出版信息

Naunyn Schmiedebergs Arch Pharmacol. 2025 Sep 9. doi: 10.1007/s00210-025-04580-3.

Abstract

Periodontal disease (PD) is a common and complex oral health problem that affects teeth and gums, leading to tooth loss, misalignment, and infection, with significant impact. Identifying the cause and developing new treatments is crucial. This study employed Mendelian randomization (MR), single-cell RNA sequencing (scRNA-seq), and integrated transcriptomics to identify key gene signatures associated with periodontitis. Three independent datasets related to periodontitis from the GEO database were analyzed using R software for data handling and normalization. The relationships between differentially expressed genes (DEGs) and periodontitis were evaluated through differential expression, eQTL, and MR analyses. Furthermore, scRNA-seq along with GO/KEGG enrichment analyses was performed to investigate the functional roles and pathways of these genes. We identified 488 highly expressed and 252 lowly expressed genes, both playing important roles in periodontitis. Colocalization and MR analyses identified 11 significantly co-expressed genes linked to periodontitis. Afterwards, we meticulously analyzed these genes using the LASSO and random forest algorithms, which ultimately led to the discovery of four hub genes through intersection (CXCR4, ARHGDIB, PLAT, and C19orf10). These genes are involved in crucial biological processes and pathways. Single-cell analysis also identified these key gene expressions in various cell types within periodontitis samples. Our findings may offer novel insights into the molecular basis of periodontitis, with a focus on specific molecular pathways for treatment, paving the way for future research.

摘要

牙周病(PD)是一种常见且复杂的口腔健康问题,会影响牙齿和牙龈,导致牙齿脱落、排列不齐和感染,影响重大。确定病因并开发新的治疗方法至关重要。本研究采用孟德尔随机化(MR)、单细胞RNA测序(scRNA-seq)和综合转录组学来识别与牙周炎相关的关键基因特征。使用R软件对来自GEO数据库的三个与牙周炎相关的独立数据集进行数据处理和标准化分析。通过差异表达、eQTL和MR分析评估差异表达基因(DEG)与牙周炎之间的关系。此外,进行scRNA-seq以及GO/KEGG富集分析以研究这些基因的功能作用和途径。我们鉴定出488个高表达基因和252个低表达基因,它们在牙周炎中均起重要作用。共定位和MR分析确定了11个与牙周炎显著共表达的基因。之后,我们使用LASSO和随机森林算法对这些基因进行了细致分析,最终通过交集发现了四个枢纽基因(CXCR4、ARHGDIB、PLAT和C19orf10)。这些基因参与关键的生物学过程和途径。单细胞分析还在牙周炎样本中的各种细胞类型中鉴定出了这些关键基因的表达。我们的研究结果可能为牙周炎的分子基础提供新的见解,重点关注特定的治疗分子途径,为未来的研究铺平道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验