Xu Ke, Maydanchik Nathaniel, Kang Bowei, Chen Jianhai, Chen Qixiang, Xu Gongyao, Tasaki Shinya, Bennett David A, Chen Lin S
Department of Public Health Sciences, The University of Chicago, Chicago, Illinois, United States of America.
Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Indiana, United States of America.
PLoS Genet. 2025 Sep 11;21(9):e1011819. doi: 10.1371/journal.pgen.1011819. eCollection 2025 Sep.
Interactions between risk factors and covariate-defined groups are commonly observed in complex diseases. Existing methods for detecting interactions typically require individual-level data. The data availability and the measurements of risk exposures and covariates often limit the power and applicability in assessing interactions. To address these limitations, we propose int2MR, an integrative Mendelian randomization (MR) method that leverages GWAS summary statistics on exposure traits and group-separated and/or combined GWAS statistics on outcome traits. The int2MR can assess a broad range of risk exposure effects on diseases and traits, revealing interactions unattainable with incomplete or limited individual-level data. Simulation studies demonstrate that int2MR effectively controls type I error rates under various settings while achieving considerable power gains with the integration of additional group-combined GWAS data. We applied int2MR to two data analyses. First, we identified risk exposures with sex-interaction effects on ADHD, and our results suggested potentially elevated inflammation in males. Second, we detected age-group-specific risk factors for Alzheimer's disease pathologies in the oldest-old (age 95+); many of these factors were related to immune and inflammatory processes. Our findings suggest that reduced chronic inflammation may underlie the distinct pathological mechanisms observed in this age group. The int2MR is a robust and flexible tool for assessing group-specific or interaction effects, providing insights into disease mechanisms.
在复杂疾病中,风险因素与协变量定义的组之间的相互作用普遍存在。现有的检测相互作用的方法通常需要个体水平的数据。数据的可获得性以及风险暴露和协变量的测量往往限制了评估相互作用的效能和适用性。为解决这些局限性,我们提出了int2MR,这是一种整合的孟德尔随机化(MR)方法,它利用暴露性状的全基因组关联研究(GWAS)汇总统计数据以及结局性状的按组分离和/或合并的GWAS统计数据。int2MR可以评估广泛的疾病和性状风险暴露效应,揭示不完整或有限个体水平数据无法实现的相互作用。模拟研究表明,int2MR在各种情况下均能有效控制I型错误率,同时通过整合额外的组合并GWAS数据实现显著的效能提升。我们将int2MR应用于两项数据分析。首先,我们确定了对注意力缺陷多动障碍(ADHD)有性别交互作用影响的风险暴露因素,我们的结果表明男性可能存在炎症升高。其次,我们在95岁及以上的高龄老年人中检测到阿尔茨海默病病理的年龄组特异性风险因素;其中许多因素与免疫和炎症过程有关。我们的研究结果表明,慢性炎症的减轻可能是该年龄组中观察到的独特病理机制的基础。int2MR是一种用于评估组特异性或相互作用效应的强大且灵活的工具,可为疾病机制提供见解。