Sparks Christopher, Steinberg Adam G, Toussaint Nigel D
Department of Nephrology, The Royal Melbourne Hospital, Melbourne, Victoria, Australia.
Department of Medicine (RMH), University of Melbourne, Melbourne, Victoria, Australia.
Nephrology (Carlton). 2025 Sep;30(9):e70118. doi: 10.1111/nep.70118.
Chronic kidney disease (CKD) represents a significant and growing healthcare burden. As CKD is defined and staged using laboratory values, it can be readily identified and characterised via data points derived from the electronic health record (EHR). This narrative literature review describes various strategies that have been employed to develop such a CKD 'e-phenotype,' evaluating accuracy, fidelity, and practicality. Methods discussed include the use of International Classification of Diseases (ICD) codes, estimated glomerular filtration rate (eGFR) and proteinuria criteria, free-text analysis and natural language processing (NLP), and machine learning techniques. Considerable variability in algorithm performance and complexity exists, with the use of eGFR and proteinuria criteria likely constituting the most practical and reliable basis for a CKD e-phenotype. In addition, promising current and future applications of the CKD e-phenotype have been outlined, such as characterising the burden of CKD complications and comorbid disease, and use as a tool to encourage optimisation of CKD management with quality, guideline-directed care. Future directions and challenges may involve integration of risk stratification and clinical decision support systems, alongside applications across public health resourcing and clinical trial recruitment.
慢性肾脏病(CKD)是一个日益严重的重大医疗负担。由于CKD是根据实验室检查值来定义和分期的,所以可以通过电子健康记录(EHR)中的数据点轻松识别并描述其特征。这篇叙述性文献综述描述了用于开发这种CKD“电子表型”的各种策略,并评估了其准确性、保真度和实用性。讨论的方法包括使用国际疾病分类(ICD)编码、估计肾小球滤过率(eGFR)和蛋白尿标准、文本分析和自然语言处理(NLP)以及机器学习技术。算法性能和复杂性存在很大差异,使用eGFR和蛋白尿标准可能构成CKD电子表型最实用和可靠的基础。此外,还概述了CKD电子表型当前和未来有前景的应用,例如描述CKD并发症和合并症的负担,以及用作鼓励以高质量、遵循指南的护理优化CKD管理的工具。未来的方向和挑战可能包括风险分层和临床决策支持系统的整合,以及在公共卫生资源配置和临床试验招募中的应用。