Suppr超能文献

利用电子健康记录衍生数据识别和表征慢性肾脏病电子表型:策略与应用的叙述性综述

Identifying and Characterising a Chronic Kidney Disease Electronic-Phenotype Using Electronic Health Record-Derived Data: A Narrative Review of Strategies and Applications.

作者信息

Sparks Christopher, Steinberg Adam G, Toussaint Nigel D

机构信息

Department of Nephrology, The Royal Melbourne Hospital, Melbourne, Victoria, Australia.

Department of Medicine (RMH), University of Melbourne, Melbourne, Victoria, Australia.

出版信息

Nephrology (Carlton). 2025 Sep;30(9):e70118. doi: 10.1111/nep.70118.

Abstract

Chronic kidney disease (CKD) represents a significant and growing healthcare burden. As CKD is defined and staged using laboratory values, it can be readily identified and characterised via data points derived from the electronic health record (EHR). This narrative literature review describes various strategies that have been employed to develop such a CKD 'e-phenotype,' evaluating accuracy, fidelity, and practicality. Methods discussed include the use of International Classification of Diseases (ICD) codes, estimated glomerular filtration rate (eGFR) and proteinuria criteria, free-text analysis and natural language processing (NLP), and machine learning techniques. Considerable variability in algorithm performance and complexity exists, with the use of eGFR and proteinuria criteria likely constituting the most practical and reliable basis for a CKD e-phenotype. In addition, promising current and future applications of the CKD e-phenotype have been outlined, such as characterising the burden of CKD complications and comorbid disease, and use as a tool to encourage optimisation of CKD management with quality, guideline-directed care. Future directions and challenges may involve integration of risk stratification and clinical decision support systems, alongside applications across public health resourcing and clinical trial recruitment.

摘要

慢性肾脏病(CKD)是一个日益严重的重大医疗负担。由于CKD是根据实验室检查值来定义和分期的,所以可以通过电子健康记录(EHR)中的数据点轻松识别并描述其特征。这篇叙述性文献综述描述了用于开发这种CKD“电子表型”的各种策略,并评估了其准确性、保真度和实用性。讨论的方法包括使用国际疾病分类(ICD)编码、估计肾小球滤过率(eGFR)和蛋白尿标准、文本分析和自然语言处理(NLP)以及机器学习技术。算法性能和复杂性存在很大差异,使用eGFR和蛋白尿标准可能构成CKD电子表型最实用和可靠的基础。此外,还概述了CKD电子表型当前和未来有前景的应用,例如描述CKD并发症和合并症的负担,以及用作鼓励以高质量、遵循指南的护理优化CKD管理的工具。未来的方向和挑战可能包括风险分层和临床决策支持系统的整合,以及在公共卫生资源配置和临床试验招募中的应用。

相似文献

5
Evaluating Kidney Function Decline in Children with Chronic Kidney Disease Using a Multi-Institutional Electronic Health Record Database.
Clin J Am Soc Nephrol. 2023 Feb 1;18(2):173-182. doi: 10.2215/CJN.0000000000000051. Epub 2023 Jan 18.
7
Synbiotics, prebiotics and probiotics for people with chronic kidney disease.
Cochrane Database Syst Rev. 2023 Oct 23;10(10):CD013631. doi: 10.1002/14651858.CD013631.pub2.
10
Management of urinary stones by experts in stone disease (ESD 2025).
Arch Ital Urol Androl. 2025 Jun 30;97(2):14085. doi: 10.4081/aiua.2025.14085.

本文引用的文献

2
KDIGO 2024 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease.
Kidney Int. 2024 Apr;105(4S):S117-S314. doi: 10.1016/j.kint.2023.10.018.
6
A Novel Chronic Kidney Disease Phenotyping Algorithm Using Combined Electronic Health Record and Claims Data.
Clin Epidemiol. 2023 Mar 8;15:299-307. doi: 10.2147/CLEP.S397020. eCollection 2023.
7
Management of patients with chronic kidney disease: a French medical centre database analysis.
Fam Pract. 2024 Jun 12;41(3):262-269. doi: 10.1093/fampra/cmad004.
8
Prescribing Patterns of Sodium-Glucose Cotransporter-2 Inhibitors in Patients with CKD: A Cross-Sectional Registry Analysis.
Kidney360. 2022 Jan 19;3(3):455-464. doi: 10.34067/KID.0007862021. eCollection 2022 Mar 31.
9
Screening and Recognition of Chronic Kidney Disease in VA Health Care System Primary Care Clinics.
Kidney360. 2020 Jul 9;1(9):904-915. doi: 10.34067/KID.0000532020. eCollection 2020 Sep 24.
10
Accuracy of identifying diagnosis of moderate to severe chronic kidney disease in administrative claims data.
Pharmacoepidemiol Drug Saf. 2022 Apr;31(4):467-475. doi: 10.1002/pds.5398. Epub 2021 Dec 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验