Suppr超能文献

人工智能驱动的闭环设备在癫痫猝死预测与预防中的应用:来自癫痫患者及其照料者的见解

Artificial intelligence-driven closed-loop devices in sudden unexpected death in epilepsy prediction and prevention: Insights from persons with epilepsy and caregivers.

作者信息

Ferreira João, França Miguel, Regalo Mariana Cardoso, Rei Mariana, Peixoto Ricardo, Aibar José Ángel, Robinson Torie, Matias Ricardo, Duprat Fabrice, Mantegazza Massimo, Parlak Onur, Ryvlin Philippe, Beniczky Sándor, Lopes Lígia, Perucca Emilio, Claro João, Conde Carlos

机构信息

Faculty of Engineering, University of Porto, Porto, Portugal.

Biostrike Unipessoal, Porto, Portugal.

出版信息

Epilepsia. 2025 Sep 23. doi: 10.1111/epi.18647.

Abstract

OBJECTIVE

The absence of strategies for predicting and preventing sudden unexpected death in epilepsy (SUDEP) is intertwined with the lack of studies measuring users' attitudes toward potential innovative interventions. The NEUROSENSE Project (http://www.neurosense-project.eu) aims to evaluate novel SUDEP-predictive neuroendocrine biomarkers in interstitial fluid. The ultimate aim is to develop an artificial intelligence-driven closed loop device (AI-CLD) prototype that can recognize life-threatening seizures and prevent SUDEP through automatic intervention. The current study introduces the potential use of AI-CLDs in SUDEP prediction and prevention, while assessing person with epilepsy (PWE) and caregiver (CG) attitudes toward AI-CLD adoption and implementation.

METHODS

A qualitative study was conducted through three focus groups involving PWEs and CGs. Participants were recruited through the NEUROSENSE Patient Advisory Board, with discussions facilitated through a semistructured interview guide. The study followed grounded theory and qualitative content analysis methods. Data were collected between October 2024 and February 2025, with all sessions transcribed and analyzed.

RESULTS

Three main areas emerged from the analysis: expectations of AI-CLDs for SUDEP prediction and prevention, decision-making processes involving AI use in health care, and barriers and facilitators to AI-CLD adoption. PWEs and CGs generally expressed positive attitudes toward AI-CLDs, supporting automatic data sharing with health care providers and real-time alerts. However, concerns about AI accuracy, overreliance on automation, and the need for control over interventions were raised. Both groups preferred wearable devices over implanted solutions, emphasizing comfort and discretion as critical factors for adoption.

SIGNIFICANCE

This study highlights the potential of AI-CLDs in improving the prediction and prevention of SUDEP, showing promise for enhancing patient safety through real-time monitoring and interventions. The findings underscore the importance of user-centered design in device development, emphasizing comfort, control over interventions, and integration into daily life. This research provides insights useful for future development aiming to improve PWE and CG confidence in using AI technologies for epilepsy care and risk management.

摘要

目的

缺乏预测和预防癫痫猝死(SUDEP)的策略,这与缺乏衡量用户对潜在创新干预措施态度的研究相互交织。NEUROSENSE项目(http://www.neurosense-project.eu)旨在评估间质液中新型的SUDEP预测性神经内分泌生物标志物。最终目标是开发一种人工智能驱动的闭环设备(AI-CLD)原型,该原型能够识别危及生命的癫痫发作,并通过自动干预预防SUDEP。本研究介绍了AI-CLD在SUDEP预测和预防中的潜在用途,同时评估癫痫患者(PWE)和护理人员(CG)对采用和实施AI-CLD的态度。

方法

通过涉及PWE和CG的三个焦点小组进行了一项定性研究。参与者通过NEUROSENSE患者咨询委员会招募,讨论通过半结构化访谈指南进行。该研究遵循扎根理论和定性内容分析方法。数据收集于2024年10月至2025年2月之间,所有会议均进行了转录和分析。

结果

分析得出三个主要方面:对AI-CLD用于SUDEP预测和预防的期望、医疗保健中涉及AI使用的决策过程,以及采用AI-CLD的障碍和促进因素。PWE和CG总体上对AI-CLD持积极态度,支持与医疗保健提供者自动共享数据和实时警报。然而,也有人提出了对AI准确性、过度依赖自动化以及对干预措施进行控制的需求的担忧。两组都更喜欢可穿戴设备而不是植入式解决方案,强调舒适性和隐蔽性是采用的关键因素。

意义

本研究突出了AI-CLD在改善SUDEP预测和预防方面的潜力,显示出通过实时监测和干预提高患者安全性的前景。研究结果强调了以用户为中心的设计在设备开发中的重要性,强调舒适性、对干预措施的控制以及融入日常生活。这项研究为未来旨在提高PWE和CG对使用AI技术进行癫痫护理和风险管理的信心的发展提供了有用的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验