Suppr超能文献

增强型决策:人工智能提升青光眼诊断与治疗的准确性

Augmented Decisions: AI-Enhanced Accuracy in Glaucoma Diagnosis and Treatment.

作者信息

Zeppieri Marco, Gagliano Caterina, Tognetto Daniele, Musa Mutali, Avitabile Alessandro, D'Esposito Fabiana, Nicolosi Simonetta Gaia, Capobianco Matteo

机构信息

Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy.

Department of Medicine, Surgery and Health Sciences, University of Trieste, 34127 Trieste, Italy.

出版信息

J Clin Med. 2025 Sep 16;14(18):6519. doi: 10.3390/jcm14186519.

Abstract

Glaucoma remains a leading cause of irreversible blindness. We reviewed more than 150 peer-reviewed studies (January 2019-July 2025) that applied artificial or augmented intelligence (AI/AuI) to glaucoma care. Deep learning systems analyzing fundus photographs or OCT volumes routinely achieved area-under-the-curve values around 0.95 and matched-or exceeded-subspecialists in prospective tests. Sequence-aware models detected visual field worsening up to 1.7 years earlier than conventional linear trends, while a baseline multimodal network integrating OCT, visual field, and clinical data predicted the need for incisional surgery with AUROC 0.92. Offline smartphone triage in community clinics reached sensitivities near 94% and specificities between 86% and 94%, illustrating feasibility in low-resource settings. Large language models answered glaucoma case questions with specialist-level accuracy but still require human oversight. Key obstacles include algorithmic bias, workflow integration, and compliance with emerging regulations, such as the EU AI Act and FDA GMLP. With rigorous validation, bias auditing, and transparent change control, AI/AuI can augment-rather than replace-clinician expertise, enabling earlier intervention, tailored therapy, and more equitable access to glaucoma care worldwide.

摘要

青光眼仍然是不可逆性失明的主要原因。我们回顾了150多项同行评审研究(2019年1月至2025年7月),这些研究将人工智能或增强智能(AI/AuI)应用于青光眼治疗。分析眼底照片或光学相干断层扫描(OCT)图像的深度学习系统通常能达到曲线下面积值约0.95,并且在前瞻性测试中与专科医生相当或超过专科医生。序列感知模型检测视野恶化比传统线性趋势早1.7年,而一个整合OCT、视野和临床数据的基线多模态网络预测切开手术需求的受试者工作特征曲线下面积(AUROC)为0.92。社区诊所中使用智能手机进行的离线分诊灵敏度接近94%,特异性在86%至94%之间,表明在资源匮乏环境中具有可行性。大型语言模型回答青光眼病例问题具有专家级准确性,但仍需要人工监督。关键障碍包括算法偏差、工作流程整合以及遵守新出现的法规,如欧盟人工智能法案和美国食品药品监督管理局良好机器学习实践(FDA GMLP)。通过严格的验证、偏差审核和透明的变更控制,AI/AuI可以增强而非取代临床医生的专业知识,在全球范围内实现更早的干预、个性化治疗以及更公平地获得青光眼治疗。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验