Suppr超能文献

通过超薄切片术制备用于析氢的全边缘二硫化钼

All-Edge MoS by Ultramicrotomy for Hydrogen Evolution.

作者信息

Bhardwaj Ankit, Ismail Abdulghani, Saurav Kalluvadi Veetil, Elgendy Amr, Keerthi Ashok, Radha Boya

机构信息

Department of Physics and Astronomy, School of Natural Sciences, University of Manchester, Manchester M13 9PL, United Kingdom.

National Graphene Institute, University of Manchester, Manchester M13 9PL, United Kingdom.

出版信息

ACS Nano. 2025 Dec 2;19(47):40516-40526. doi: 10.1021/acsnano.5c14853. Epub 2025 Oct 27.

Abstract

MoS is a promising catalyst for the hydrogen evolution reaction (HER), with edge sites known to be significantly more active than basal planes. However, the influence of external factors such as edge packing and the distance electrons must traverse through the basal plane remains underexplored, mainly due to the lack of precise MoS structuring methods. Existing approaches typically yield mixtures containing both basal planes and edge sites, limiting control over active site exposure. Here, we developed a slicing-based approach using ultramicrotomy to fabricate MoS structures composed exclusively of edge terminations, with tunable spacing and distances to the underlying electrode. This technique enables strong control over the edge morphology, alignment, and electrochemical accessibility. Benchmarking the HER performance of these precision-sliced all-edge MoS structures on glassy carbon revealed a trend where thinner, more disordered, and open-edge arrangements outperform thicker, compact, and aligned slices. This indicates that catalytic performance depends not only on edge abundance but also on accessibility, geometric openness, and electron transfer resistance in the basal plane. The pristine vMoS-⊥ exhibits an overpotential of ∼300 mV at 10 mA cm, which is higher than some chemically modified MoS systems; however, with Au nanoparticle decoration, the overpotential decreases to 180 mV, comparable to state-of-the-art MoS-based catalysts. Our findings offer mechanistic understanding of HER activity in MoS, provide a platform for rational edge engineering in two-dimensional (2D) electrocatalysts, and show potential for future scaling through automated slicing and transfer processes.

摘要

硫化钼是一种很有前景的析氢反应(HER)催化剂,已知其边缘位点的活性明显高于基面。然而,诸如边缘堆积和电子穿过基面必须经过的距离等外部因素的影响仍未得到充分研究,主要原因是缺乏精确的硫化钼结构化方法。现有方法通常会产生同时包含基面和边缘位点的混合物,限制了对活性位点暴露的控制。在这里,我们开发了一种基于切片的方法,使用超薄切片技术制造仅由边缘终止组成的硫化钼结构,其间距和与底层电极的距离可调。该技术能够对边缘形态、排列和电化学可及性进行强有力的控制。在玻碳上对这些精确切片的全边缘硫化钼结构的HER性能进行基准测试,结果显示出一种趋势,即更薄、更无序和开放边缘的排列优于更厚、紧凑和对齐的切片。这表明催化性能不仅取决于边缘丰度,还取决于可及性、几何开放性和基面中的电子转移电阻。原始的垂直取向硫化钼在10 mA cm时的过电位约为300 mV,高于一些化学修饰的硫化钼体系;然而,通过金纳米颗粒修饰,过电位降至180 mV,与最先进的基于硫化钼的催化剂相当。我们的研究结果提供了对硫化钼中HER活性的机理理解,为二维(2D)电催化剂的合理边缘工程提供了一个平台,并显示了通过自动化切片和转移过程实现未来规模化的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验