Suppr超能文献

线粒体的生物发生。酿酒酵母的生理和基因操作对三羧酸循环阴离子线粒体转运系统的影响。

Biogenesis of mitochondria. The effects of physiological and genetic manipulation of Saccharomyces cerevisiae on the mitochondrial transport systems for tricarboxylate-cycle anions.

作者信息

Perkins M, Haslam J M, Linnane A W

出版信息

Biochem J. 1973 Aug;134(4):923-34. doi: 10.1042/bj1340923.

Abstract
  1. Kinetic and equilibrium parameters for the uptake of l-malate, succinate, citrate and alpha-oxoglutarate by fully functional mitochondria of Saccharomyces cerevisiae were determined. 2. The uptake of l-malate and succinate is mediated by a common carrier, and two other distinct carriers mediate the uptake of citrate and alpha-oxoglutarate. 3. The properties of the carrier systems for l-malate, succinate and citrate closely resemble those of mammalian mitochondria, but the alpha-oxoglutarate carrier differs from the mammalian system in minor respects. 4. The composition of the yeast mitochondria was extensively manipulated by (a) anaerobiosis, (b) catabolite repression, (c) inhibition of mitochondrial protein synthesis and (d) elimination of mitochondrial DNA by mutation. 5. The carrier systems for l-malate, succinate, citrate and alpha-oxoglutarate are essentially similar in the five different types of mitochondria. 6. It is concluded that all the protein components of the carrier systems for l-malate, succinate, citrate and alpha-oxoglutarate are coded by nuclear genes and synthesized extramitochondrially by cell-sap ribosomes.
摘要
  1. 测定了酿酒酵母完全功能性线粒体摄取L-苹果酸、琥珀酸、柠檬酸和α-酮戊二酸的动力学和平衡参数。2. L-苹果酸和琥珀酸的摄取由一种共同载体介导,另外两种不同的载体介导柠檬酸和α-酮戊二酸的摄取。3. L-苹果酸、琥珀酸和柠檬酸载体系统的特性与哺乳动物线粒体的非常相似,但α-酮戊二酸载体在一些小方面与哺乳动物系统不同。4. 通过(a)无氧培养、(b)分解代谢物阻遏、(c)抑制线粒体蛋白质合成和(d)通过突变消除线粒体DNA,对酵母线粒体的组成进行了广泛调控。5. L-苹果酸、琥珀酸、柠檬酸和α-酮戊二酸的载体系统在五种不同类型的线粒体中基本相似。6. 得出的结论是,L-苹果酸、琥珀酸、柠檬酸和α-酮戊二酸载体系统的所有蛋白质成分均由核基因编码,并由胞质核糖体在线粒体外部合成。

相似文献

5
The inhibition of malate, tricarboxylate and oxoglutarate entry into mitochondria by 2-n-butylmalonate.
Biochem Biophys Res Commun. 1967 Jul 21;28(2):249-55. doi: 10.1016/0006-291x(67)90437-8.
6
Control of phosphoenolpyruvate synthesis in guinea-pig mitochondria.
Biochem J. 1973 Mar;132(3):553-7. doi: 10.1042/bj1320553.
7
Metabolite transport in isolated yeast mitochondria: fumarate/malate and succinate/malate antiports.
FEBS Lett. 1999 Dec 3;462(3):313-6. doi: 10.1016/s0014-5793(99)01535-5.
10
Subcellular distribution of malate-aspartate cycle intermediates during normoxia and anoxia in the heart.
Biochim Biophys Acta. 1988 Oct 26;936(1):114-23. doi: 10.1016/0005-2728(88)90258-7.

本文引用的文献

1
The permeability of mitochondria to oxaloacetate and malate.
Biochem J. 1968 May;107(5):659-67. doi: 10.1042/bj1070659.
3
The effects of physiological and genetic manipulation on the anion transport systems of yeast mitochondria.
FEBS Lett. 1972 Sep 15;25(2):271-274. doi: 10.1016/0014-5793(72)80501-5.
4
Isolation and study of functional membrane proteins Present status and future prospects.
FEBS Lett. 1971 May 20;14(5):269-282. doi: 10.1016/0014-5793(71)80278-8.
6
The intracellular site of formation of the mitochondrial protein synthetic system.
Biochem Biophys Res Commun. 1969 Jul 7;36(1):30-4. doi: 10.1016/0006-291x(69)90644-5.
8
Accumulation of substrates by mitochondria.
Biochim Biophys Acta. 1968 Oct 1;162(3):301-9. doi: 10.1016/0005-2728(68)90116-3.
10
Systems used for the transport of substrates into mitochondria.
Br Med Bull. 1968 May;24(2):150-7. doi: 10.1093/oxfordjournals.bmb.a070618.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验