Suppr超能文献

缺乏多胺生物合成的酿酒酵母突变体:鸟氨酸脱羧酶调控的研究

Mutants of Saccharomyces cerevisiae deficient in polyamine biosynthesis: studies on the regulation of ornithine decarboxylase.

作者信息

Tabor C W

出版信息

Med Biol. 1981 Dec;59(5-6):272-8.

PMID:7040829
Abstract

We have isolated the following mutants in the polyamine biosynthetic pathway in yeast: (i) spe10 mutants, which have no ornithine decarboxylase activity and therefore cannot make putrescine; (ii) spe2 mutants, which have no adenosylmethionine decarboxylase and therefore cannot make spermidine or spermine; (iii) spe3 mutants, which have no putrescine aminopropyltransferase and therefore cannot make spermidine and spermine, and (iv) spe4 and spe40 mutants (suppressors of spe10 mutations), which have no spermidine aminopropyltransferase and therefore cannot make spermine. These mutants show that (i) yeast has an absolute requirement for these amines for growth (ii) putrescine in the absence of spermidine and spermine supports growth at one-sixth the wild type rate; (iii) intracellular spermine controls the ornithine decarboxylase activity and thus mutants that cannot make spermine are derepressed for ornithine decarboxylase; (iv) Saccharomyces cerevisiae can make putrescine only by one pathway, i.e., ornithine decarboxylase; (v) spermidine and spermine are synthesized by different aminopropyltransferases in yeast; and (vi) spermidine and/or spermine are absolutely required for both sporulation and maintenance of the double-stranded RNA "killer" plasmid. We have purified ornithine decarboxylase to homogeneity and shown that loss of ornithine decarboxylase activity resulting from growth with added spermidine and spermine is the result of post-translational modification.

摘要

我们在酵母的多胺生物合成途径中分离出了以下突变体

(i) spe10突变体,其没有鸟氨酸脱羧酶活性,因此无法合成腐胺;(ii) spe2突变体,其没有腺苷甲硫氨酸脱羧酶,因此无法合成亚精胺或精胺;(iii) spe3突变体,其没有腐胺氨基丙基转移酶,因此无法合成亚精胺和精胺;以及(iv) spe4和spe40突变体(spe10突变的抑制子),其没有亚精胺氨基丙基转移酶,因此无法合成精胺。这些突变体表明:(i) 酵母生长绝对需要这些胺类物质;(ii) 在没有亚精胺和精胺的情况下,腐胺能以野生型速率的六分之一支持生长;(iii) 细胞内精胺控制鸟氨酸脱羧酶的活性,因此无法合成精胺的突变体中鸟氨酸脱羧酶的表达不受抑制;(iv) 酿酒酵母只能通过一条途径合成腐胺,即鸟氨酸脱羧酶途径;(v) 酵母中,亚精胺和精胺由不同的氨基丙基转移酶合成;以及(vi) 孢子形成和双链RNA“杀手”质粒的维持都绝对需要亚精胺和/或精胺。我们已将鸟氨酸脱羧酶纯化至同质,并表明添加亚精胺和精胺培养导致的鸟氨酸脱羧酶活性丧失是翻译后修饰的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验