Suppr超能文献

霍尔丹法则的显性理论。

The dominance theory of Haldane's rule.

作者信息

Turelli M, Orr H A

机构信息

Section of Evolution and Ecology, University of California, Davis 95616, USA.

出版信息

Genetics. 1995 May;140(1):389-402. doi: 10.1093/genetics/140.1.389.

Abstract

"HALDANE's rule" states that, if species hybrids of one sex only are inviable or sterile, the afflicted sex is much more likely to be heterogametic (XY) than homogametic (XX). We show that most or all of the phenomena associated with HALDANE's rule can be explained by the simple hypothesis that alleles decreasing hybrid fitness are partially recessive. Under this hypothesis, the XY sex suffers more than the XX because X-linked alleles causing postzygotic isolation tend to have greater cumulative effects when hemizygous than when heterozygous, even though the XX sex carries twice as many such alleles. The dominance hypothesis can also account for the "large X effect," the disproportionate effect of the X chromosome on hybrid inviability/sterility. In addition, the dominance theory is consistent with: the long temporal lag between the evolution of heterogametic and homogametic postzygotic isolation, the frequency of exceptions to HALDANE's rule, puzzling Drosophila experiments in which "unbalanced" hybrid females, who carry two X chromosomes from the same species, remain fertile whereas F1 hybrid males are sterile, and the absence of cases of HALDANE's rule for hybrid inviability in mammals. We discuss several novel predictions that could lead to rejection of the dominance theory.

摘要

“霍尔丹法则”指出,如果仅一方性别的物种杂种是 inviable 或不育的,那么受影响的性别更有可能是异配性别(XY)而非同配性别(XX)。我们表明,与霍尔丹法则相关的大多数或所有现象都可以通过一个简单的假设来解释,即降低杂种适合度的等位基因是部分隐性的。在这个假设下,XY 性别比 XX 性别遭受的影响更大,因为导致合子后隔离的 X 连锁等位基因半合子时往往比杂合时具有更大的累积效应,尽管 XX 性别携带的此类等位基因数量是 XY 性别的两倍。显性假说也可以解释“X 染色体的大效应”,即 X 染色体对杂种 inviability/不育性的不成比例的影响。此外,显性理论与以下情况一致:异配性别和合配性别合子后隔离进化之间的长时间滞后、霍尔丹法则的例外情况的频率、令人困惑的果蝇实验,即携带来自同一物种的两条 X 染色体的“不平衡”杂种雌性仍然可育,而 F1 杂种雄性不育,以及哺乳动物中不存在杂种 inviability 的霍尔丹法则的情况。我们讨论了几个可能导致拒绝显性理论的新预测。

相似文献

1
The dominance theory of Haldane's rule.
Genetics. 1995 May;140(1):389-402. doi: 10.1093/genetics/140.1.389.
2
Haldane's rule has multiple genetic causes.
Nature. 1993 Feb 11;361(6412):532-3. doi: 10.1038/361532a0.
3
Haldane's rule in taxa lacking a hemizygous X.
Science. 1998 Oct 30;282(5390):952-4. doi: 10.1126/science.282.5390.952.
4
Differential strength of sex-biased hybrid inferiority in impeding gene flow may be a cause of Haldane's rule.
J Evol Biol. 2003 Mar;16(2):353-61. doi: 10.1046/j.1420-9101.2003.00528.x.
5
The genetic basis of Haldane's rule.
Nature. 1985;314(6013):736-8. doi: 10.1038/314736a0.
7
Genetic architecture of isolation between two species of Silene with sex chromosomes and Haldane's rule.
Evolution. 2014 Feb;68(2):332-42. doi: 10.1111/evo.12269. Epub 2013 Sep 30.
8
Complex basis of hybrid female sterility and Haldane's rule in Heliconius butterflies: Z-linkage and epistasis.
Mol Ecol. 2022 Feb;31(3):959-977. doi: 10.1111/mec.16272. Epub 2021 Nov 26.
9
Haldane's rule in marsupials: what happens when both sexes are functionally hemizygous?
J Hered. 2012 May-Jun;103(3):453-8. doi: 10.1093/jhered/esr154. Epub 2012 Feb 29.
10
100 years of Haldane's rule.
J Evol Biol. 2023 Feb;36(2):337-346. doi: 10.1111/jeb.14112. Epub 2022 Nov 10.

引用本文的文献

4
Genomic regions of current low hybridisation mark long-term barriers to gene flow in scarce swallowtail butterflies.
PLoS Genet. 2025 Apr 10;21(4):e1011655. doi: 10.1371/journal.pgen.1011655. eCollection 2025 Apr.
5
Hiding in plain sight: the Y chromosome and its reinvigorated role in evolutionary processes.
Evol Lett. 2024 Nov 27;9(2):165-171. doi: 10.1093/evlett/qrae065. eCollection 2025 Apr.
6
Genomic, Phenotypic and Environmental Correlates of Speciation in the Midwife Toads (Alytes).
Mol Ecol. 2025 Apr;34(8):e17736. doi: 10.1111/mec.17736. Epub 2025 Mar 25.
9
Identification and genetic analysis of a pervasive 'needle-eye' sperm phenotype in sterile hybrid males.
Proc Biol Sci. 2024 Jun;291(2025):20240483. doi: 10.1098/rspb.2024.0483. Epub 2024 Jun 19.

本文引用的文献

1
Viability of Female Germ-Line Cells Homozygous for Zygotic Lethals in DROSOPHILA MELANOGASTER.
Genetics. 1983 Feb;103(2):235-47. doi: 10.1093/genetics/103.2.235.
3
X-chromosome inactivation: molecular mechanisms and genetic consequences.
Trends Genet. 1994 Jul;10(7):230-5. doi: 10.1016/0168-9525(94)90169-4.
6
Genetics of postmating reproductive isolation in animals.
Annu Rev Genet. 1994;28:283-308. doi: 10.1146/annurev.ge.28.120194.001435.
7
The molecular basis of dominance.
Genetics. 1981 Mar-Apr;97(3-4):639-66. doi: 10.1093/genetics/97.3-4.639.
8
X chromosome reactivation in oocytes of Mus caroli.
Proc Natl Acad Sci U S A. 1981 May;78(5):3093-7. doi: 10.1073/pnas.78.5.3093.
10
Differentiation of X chromosomes in early female mouse embryos.
Exp Cell Res. 1974 May;86(1):127-35. doi: 10.1016/0014-4827(74)90657-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验