Isenberg G, Han S, Schiefer A, Wendt-Gallitelli M F
Department of Physiology, University of Cologne, Köln, Germany.
Cardiovasc Res. 1993 Oct;27(10):1800-9. doi: 10.1093/cvr/27.10.1800.
The aim was to examine whether mitochondrial Ca2+ fluxes are high enough to change mitochondrial and cytosolic calcium concentration during the contraction cycle.
Isolated guinea pig ventricular myocytes were stimulated with paired voltage clamp pulses until contractions were maximal (2 mM [Ca2+]o, 36 degrees C). At defined times of diastole or systole, the cells were shock frozen. Electron-probe microanalysis measured the concentration of total calcium in mitochondria (sigma Ca(mito)) and surrounding cytosol (sigma Cac). Other experiments were performed to evaluate DNP sensitive mitochondrial Ca2+ uptake from depolarisation induced [Ca2+]c transients (K5indo-1 fluorescence).
At end of diastole, sigma Ca(mito) was 446 mumol.litre-1. During systole, sigma Ca(mito) increased with a 20 ms delay. A peak sigma Ca(mito) of 1050 mumol.litre-1 was measured 40 ms after start of systole, while 95 ms after start of systole sigma Ca(mito) had fallen to 530 mumol.litre-1. From the changes in sigma Ca(mito) the rates of net mitochondrial Ca2+ flux were estimated at 100 nmol.s-1 x mg-1 protein for Ca2+ influx and 36 nmol.s-1 x mg-1 protein for Ca2+ egress. Decay of sigma Ca(mito) was coupled to a rise in sigma Na(mito). sigma Cl(mito) and sigma K(mito) rose and fell in parallel with sigma Ca(mito), suggesting Ca2+ activation of mitochondrial anion and cation channels. Activation of the non-specific permeability can be excluded. Block of mitochondrial Ca2+ uptake with DNP (100 microM) or FCCP (10 microM) increased the amplitude of the [Ca2+]c transients for 1-3 min by about 50%; evaluation of mitochondrial Ca2+ uptake from DNP sensitive difference signals, however, was hampered by sequestration of mitochondrial Ca2+ into the sarcoplasmic reticulum.
Mitochondrial calcium content changes during each individual contraction cycle; a substantial amount of calcium is taken up during the systole and released during later systole and diastole.
研究线粒体Ca2+通量是否足够高,足以在收缩周期中改变线粒体和胞质钙浓度。
用双电压钳脉冲刺激分离的豚鼠心室肌细胞,直至收缩达到最大值([Ca2+]o为2 mM,36℃)。在舒张期或收缩期的特定时间,将细胞速冻。电子探针微分析测量线粒体(σCa(mito))和周围胞质(σCac)中的总钙浓度。进行其他实验以评估去极化诱导的[Ca2+]c瞬变(K5indo-1荧光)引起的DNP敏感的线粒体Ca2+摄取。
舒张期末,σCa(mito)为446 μmol·L-1。收缩期,σCa(mito)延迟20 ms增加。收缩开始后40 ms测得σCa(mito)峰值为1050 μmol·L-1,而收缩开始后95 ms,σCa(mito)降至530 μmol·L-1。根据σCa(mito)的变化,估计线粒体Ca2+净通量速率为Ca2+流入时100 nmol·s-1·mg-1蛋白,Ca2+流出时36 nmol·s-1·mg-1蛋白。σCa(mito)的衰减与σNa(mito)的升高相关。σCl(mito)和σK(mito)与σCa(mito)平行升降,提示Ca2+激活线粒体阴离子和阳离子通道。可排除非特异性通透性的激活。用DNP(100 μM)或FCCP(10 μM)阻断线粒体Ca2+摄取1 - 3分钟,[Ca2+]c瞬变幅度增加约50%;然而,由于线粒体Ca2+被隔离到肌浆网中,通过DNP敏感差异信号评估线粒体Ca2+摄取受到阻碍。
在每个单独的收缩周期中线粒体钙含量发生变化;收缩期摄取大量钙,随后的收缩期和舒张期释放钙。