Suppr超能文献

三维受阻扩散的蒙特卡罗分析:在细胞器分子扩散中的应用

Monte Carlo analysis of obstructed diffusion in three dimensions: application to molecular diffusion in organelles.

作者信息

Olveczky B P, Verkman A S

机构信息

Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco 94143, USA.

出版信息

Biophys J. 1998 May;74(5):2722-30. doi: 10.1016/S0006-3495(98)77978-0.

Abstract

Molecular transport in the aqueous lumen of organelles involves diffusion in a confined compartment with complex geometry. Monte Carlo simulations of particle diffusion in three dimensions were carried out to evaluate the influence of organelle structure on diffusive transport and to relate experimental photobleaching data to intrinsic diffusion coefficients. Two organelle structures were modeled: a mitochondria-like long closed cylinder containing fixed luminal obstructions of variable number and size, and an endoplasmic reticulum-like network of interconnected cylinders of variable diameter and density. Trajectories were computed in each simulation for >10(5) particles, generally for >10(5) time steps. Computed time-dependent concentration profiles agreed quantitatively with analytical solutions of the diffusion equation for simple geometries. For mitochondria-like cylinders, significant slowing of diffusion required large or wide single obstacles, or multiple obstacles. In simulated spot photobleaching experiments, a approximately 25% decrease in apparent diffusive transport rate (defined by the time to 75% fluorescence recovery) was found for a single thin transverse obstacle occluding 93% of lumen area, a single 53%-occluding obstacle of width 16 lattice points (8% of cylinder length), 10 equally spaced 53% obstacles alternately occluding opposite halves of the cylinder lumen, or particle binding to walls (with mean residence time = 10 time steps). Recovery curve shape with obstacles showed long tails indicating anomalous diffusion. Simulations also demonstrated the utility of measurement of fluorescence depletion at a spot distant from the bleach zone. For a reticulum-like network, particle diffusive transport was mildly reduced from that in unobstructed three-dimensional space. In simulated photobleaching experiments, apparent diffusive transport was decreased by 39-60% in reticular structures in which 90-97% of space was occluded. These computations provide an approach to analyzing photobleaching data in terms of microscopic diffusive properties and support the paradigm that organellar barriers must be quite severe to seriously impede solute diffusion.

摘要

细胞器水相腔中的分子运输涉及在具有复杂几何形状的受限隔室内的扩散。进行了三维粒子扩散的蒙特卡罗模拟,以评估细胞器结构对扩散运输的影响,并将实验光漂白数据与固有扩散系数相关联。对两种细胞器结构进行了建模:一种是类似线粒体的长封闭圆柱体,包含数量和大小可变的固定腔内障碍物;另一种是类似内质网的由直径和密度可变的相互连接的圆柱体组成的网络。在每个模拟中,为超过10⁵个粒子计算轨迹,通常计算超过10⁵个时间步长。计算得到的随时间变化的浓度分布与简单几何形状扩散方程的解析解在数量上一致。对于类似线粒体的圆柱体,扩散的显著减慢需要大的或宽的单个障碍物,或多个障碍物。在模拟的点光漂白实验中,对于一个阻塞93%腔面积的单个薄横向障碍物、一个宽度为16个晶格点(圆柱体长度的8%)阻塞53%的单个障碍物、10个等间距交替阻塞圆柱体腔相对两半的53%障碍物,或粒子与壁结合(平均停留时间 = 10个时间步长),发现表观扩散运输速率(由75%荧光恢复时间定义)大约降低25%。有障碍物时恢复曲线形状显示出长尾巴,表明存在反常扩散。模拟还证明了在远离漂白区的一个点测量荧光消耗的实用性。对于类似网状的网络,粒子扩散运输比在无阻碍的三维空间中略有降低。在模拟光漂白实验中,在90 - 97%的空间被阻塞网状结构中,表观扩散运输降低了39 - 60%。这些计算提供了一种根据微观扩散特性分析光漂白数据的方法,并支持这样一种范式,即细胞器屏障必须相当严重才能严重阻碍溶质扩散。

相似文献

2
Effects of organelle shape on fluorescence recovery after photobleaching.
Biophys J. 2005 Sep;89(3):1482-92. doi: 10.1529/biophysj.104.057885. Epub 2005 Jun 10.
3
Anomalous subdiffusion in fluorescence photobleaching recovery: a Monte Carlo study.
Biophys J. 2001 Oct;81(4):2226-40. doi: 10.1016/S0006-3495(01)75870-5.
4
6
Anomalous transport in the crowded world of biological cells.
Rep Prog Phys. 2013 Apr;76(4):046602. doi: 10.1088/0034-4885/76/4/046602. Epub 2013 Mar 12.
7
Sources of anomalous diffusion on cell membranes: a Monte Carlo study.
Biophys J. 2007 Mar 15;92(6):1975-87. doi: 10.1529/biophysj.105.076869. Epub 2006 Dec 22.
9
Nanoscale topography influences polymer surface diffusion.
ACS Nano. 2015 Feb 24;9(2):1656-64. doi: 10.1021/nn506376n. Epub 2015 Jan 28.

引用本文的文献

1
Diffusion Analyses along Mean and Gaussian-Curved Membranes with CurD.
J Phys Chem Lett. 2024 Mar 21;15(11):3214-3220. doi: 10.1021/acs.jpclett.4c00338. Epub 2024 Mar 14.
2
Analyzing Photoactivation with Diffusion Models to Study Transport in the Endoplasmic Reticulum Network.
Methods Mol Biol. 2024;2772:407-432. doi: 10.1007/978-1-0716-3710-4_31.
4
Stress-dependent macromolecular crowding in the mitochondrial matrix.
EMBO J. 2023 Apr 3;42(7):e108533. doi: 10.15252/embj.2021108533. Epub 2023 Feb 24.
5
Single-Molecule Displacement Mapping Unveils Sign-Asymmetric Protein Charge Effects on Intraorganellar Diffusion.
Nano Lett. 2023 Mar 8;23(5):1711-1716. doi: 10.1021/acs.nanolett.2c04379. Epub 2023 Feb 20.
6
Three-Dimensional Model of Sub-Plasmalemmal Ca Microdomains Evoked by T Cell Receptor/CD3 Complex Stimulation.
Front Mol Biosci. 2022 Feb 23;9:811145. doi: 10.3389/fmolb.2022.811145. eCollection 2022.
7
Three-Dimensional Model of Sub-Plasmalemmal Ca Microdomains Evoked by the Interplay Between ORAI1 and InsP Receptors.
Front Immunol. 2021 Apr 28;12:659790. doi: 10.3389/fimmu.2021.659790. eCollection 2021.
8
Mitochondrial morphology provides a mechanism for energy buffering at synapses.
Sci Rep. 2019 Dec 4;9(1):18306. doi: 10.1038/s41598-019-54159-1.
9
Mitochondrial Morphofunction in Mammalian Cells.
Antioxid Redox Signal. 2019 Jun 20;30(18):2066-2109. doi: 10.1089/ars.2018.7534. Epub 2018 Nov 29.
10
Simulation of changes in diffusion related to different pathologies at cellular level after traumatic brain injury.
Magn Reson Med. 2016 Jul;76(1):290-300. doi: 10.1002/mrm.25816. Epub 2015 Aug 10.

本文引用的文献

1
Rapid diffusion of green fluorescent protein in the mitochondrial matrix.
J Cell Biol. 1998 Feb 23;140(4):821-9. doi: 10.1083/jcb.140.4.821.
2
A general computational framework for modeling cellular structure and function.
Biophys J. 1997 Sep;73(3):1135-46. doi: 10.1016/S0006-3495(97)78146-3.
3
Translational diffusion of macromolecule-sized solutes in cytoplasm and nucleus.
J Cell Biol. 1997 Jul 14;138(1):131-42. doi: 10.1083/jcb.138.1.131.
4
Chromatin dynamics in interphase nuclei and its implications for nuclear structure.
J Cell Biol. 1997 Jun 30;137(7):1459-68. doi: 10.1083/jcb.137.7.1459.
6
7
Targeting aequorin and green fluorescent protein to intracellular organelles.
Gene. 1996;173(1 Spec No):113-7. doi: 10.1016/0378-1119(95)00687-7.
8
Diffusional mobility of Golgi proteins in membranes of living cells.
Science. 1996 Aug 9;273(5276):797-801. doi: 10.1126/science.273.5276.797.
9
Lateral diffusion in an archipelago. Dependence on tracer size.
Biophys J. 1993 Apr;64(4):1053-62. doi: 10.1016/S0006-3495(93)81471-1.
10
Determinants of the translational mobility of a small solute in cell cytoplasm.
J Cell Biol. 1993 Jan;120(1):175-84. doi: 10.1083/jcb.120.1.175.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验