Medkova M, Cho W
Department of Chemistry, University of Illinois, Chicago, Illinois 60607-7061, USA.
J Biol Chem. 1998 Jul 10;273(28):17544-52. doi: 10.1074/jbc.273.28.17544.
The C2 domains of conventional protein kinase C (PKC) have been implicated in their Ca2+-dependent membrane binding. The C2 domain of PKC-alpha contains several Ca2+ ligands that bind multiple Ca2+ ions and other putative membrane binding residues. To understand the roles of individual Ca2+ ligands and protein-bound Ca2+ ions in the membrane binding and activation of PKC-alpha, we mutated five putative Ca2+ ligands (D187N, D193N, D246N, D248N, and D254N) and measured the effects of mutations on vesicle binding, enzyme activity, and monolayer penetration of PKC-alpha. Altered properties of these mutants indicate that individual Ca2+ ions and their ligands have different roles in the membrane binding and activation of PKC-alpha. The binding of Ca2+ to Asp187, Asp193, and Asp246 of PKC-alpha is important for the initial binding of protein to membrane surfaces. On the other hand, the binding of another Ca2+ to Asp187, Asp246, Asp248, and Asp254 induces the conformational change of PKC-alpha, which in turn triggers its membrane penetration and activation. Among these Ca2+ ligands, Asp246 was shown to be most essential for both membrane binding and activation of PKC-alpha, presumably due to its coordination to multiple Ca2+ ions. Furthermore, to identify the residues in the C2 domain that are involved in membrane binding of PKC-alpha, we mutated four putative membrane binding residues (Trp245, Trp247, Arg249, and Arg252). Membrane binding and enzymatic properties of two double-site mutants (W245A/W247A and R249A/R252A) indicate that Arg249 and Arg252 are involved in electrostatic interactions of PKC-alpha with anionic membranes, whereas Trp245 and Trp247 participate in its penetration into membranes and resulting hydrophobic interactions. Taken together, these studies provide the first experimental evidence for the role of C2 domain of conventional PKC as a membrane docking unit as well as a module that triggers conformational changes to activate the protein.
传统蛋白激酶C(PKC)的C2结构域与它们依赖Ca2+的膜结合有关。PKC-α的C2结构域包含几个能结合多个Ca2+离子的Ca2+配体以及其他假定的膜结合残基。为了了解单个Ca2+配体和与蛋白结合的Ca2+离子在PKC-α的膜结合和激活中的作用,我们对五个假定的Ca2+配体(D187N、D193N、D246N、D248N和D254N)进行了突变,并测量了这些突变对PKC-α的囊泡结合、酶活性和单层穿透的影响。这些突变体性质的改变表明,单个Ca2+离子及其配体在PKC-α的膜结合和激活中具有不同的作用。Ca2+与PKC-α的Asp187、Asp193和Asp246的结合对于蛋白与膜表面的初始结合很重要。另一方面,另一个Ca2+与Asp187、Asp246、Asp248和Asp254的结合诱导了PKC-α的构象变化,进而触发其膜穿透和激活。在这些Ca2+配体中,Asp246被证明对PKC-α的膜结合和激活最为关键,可能是由于它与多个Ca2+离子配位。此外,为了确定C2结构域中参与PKC-α膜结合的残基,我们对四个假定的膜结合残基(Trp245、Trp247、Arg249和Arg252)进行了突变。两个双位点突变体(W245A/W247A和R249A/R252A)的膜结合和酶学性质表明,Arg249和Arg252参与PKC-α与阴离子膜的静电相互作用,而Trp245和Trp247参与其对膜的穿透以及由此产生的疏水相互作用。综上所述,这些研究为传统PKC的C2结构域作为膜对接单元以及触发构象变化以激活蛋白的模块的作用提供了首个实验证据。