Suppr超能文献

人体多关节手臂的任务依赖型粘弹性及其与环境交互的空间特征。

Task-dependent viscoelasticity of human multijoint arm and its spatial characteristics for interaction with environments.

作者信息

Gomi H, Osu R

机构信息

NTT Basic Research Laboratories, Nippon Telegraph and Telephone Corporation, Kanagawa, 243-0198, Japan.

出版信息

J Neurosci. 1998 Nov 1;18(21):8965-78. doi: 10.1523/JNEUROSCI.18-21-08965.1998.

Abstract

Human arm viscoelasticity is important in stabilizing posture, movement, and in interacting with objects. Viscoelastic spatial characteristics are usually indexed by the size, shape, and orientation of a hand stiffness ellipse. It is well known that arm posture is a dominant factor in determining the properties of the stiffness ellipse. However, it is still unclear how much joint stiffness can change under different conditions, and the effects of that change on the spatial characteristics of hand stiffness are poorly examined. To investigate the dexterous control mechanisms of the human arm, we studied the controllability and spatial characteristics of viscoelastic properties of human multijoint arm during different cocontractions and force interactions in various directions and amplitudes in a horizontal plane. We found that different cocontraction ratios between shoulder and elbow joints can produce changes in the shape and orientation of the stiffness ellipse, especially at proximal hand positions. During force regulation tasks we found that shoulder and elbow single-joint stiffness was each roughly proportional to the torque of its own joint, and cross-joint stiffness was correlated with elbow torque. Similar tendencies were also found in the viscosity-torque relationships. As a result of the joint stiffness changes, the orientation and shape of the stiffness ellipses varied during force regulation tasks as well. Based on these observations, we consider why we can change the ellipse characteristics especially in the proximal posture. The present results suggest that humans control directional characteristics of hand stiffness by changing joint stiffness to achieve various interactions with objects.

摘要

人体手臂的粘弹性对于稳定姿势、运动以及与物体的交互至关重要。粘弹性空间特征通常由手部刚度椭圆的大小、形状和方向来表征。众所周知,手臂姿势是决定刚度椭圆特性的主要因素。然而,目前尚不清楚在不同条件下关节刚度能改变多少,并且这种变化对手部刚度空间特征的影响也鲜有研究。为了探究人体手臂的灵巧控制机制,我们研究了人体多关节手臂在水平面内不同协同收缩以及不同方向和幅度的力相互作用过程中粘弹性特性的可控性和空间特征。我们发现,肩部和肘部关节之间不同的协同收缩比率会导致刚度椭圆的形状和方向发生变化,尤其是在手部近端位置。在力调节任务中,我们发现肩部和肘部单关节刚度各自大致与自身关节的扭矩成正比,并且交叉关节刚度与肘部扭矩相关。在粘性 - 扭矩关系中也发现了类似趋势。由于关节刚度的变化,在力调节任务期间刚度椭圆的方向和形状也会发生变化。基于这些观察结果,我们思考了为什么我们能够改变椭圆特征,特别是在近端姿势下。目前的结果表明,人类通过改变关节刚度来控制手部刚度的方向特征,以实现与物体的各种交互。

相似文献

2
Multijoint muscle regulation mechanisms examined by measured human arm stiffness and EMG signals.
J Neurophysiol. 1999 Apr;81(4):1458-68. doi: 10.1152/jn.1999.81.4.1458.
3
Effects of voluntary force generation on the elastic components of endpoint stiffness.
Exp Brain Res. 2001 Dec;141(3):312-23. doi: 10.1007/s002210100880.
4
Directional tuning effects during cyclical two-joint arm movements in the horizontal plane.
Exp Brain Res. 2001 Dec;141(4):471-84. doi: 10.1007/s002210100874. Epub 2001 Oct 20.
5
General coordination of shoulder, elbow and wrist dynamics during multijoint arm movements.
Exp Brain Res. 2002 Jan;142(2):163-80. doi: 10.1007/s002210100882. Epub 2001 Dec 6.
6
Human arm stiffness characteristics during the maintenance of posture.
Exp Brain Res. 1990;82(2):315-26. doi: 10.1007/BF00231251.
7
Control of double-joint arm posture in adults with unilateral brain damage.
Exp Brain Res. 2005 Jun;163(4):468-86. doi: 10.1007/s00221-004-2202-9. Epub 2005 Feb 3.
8
Persistence of inter-joint coupling during single-joint elbow flexions after shoulder fixation.
Exp Brain Res. 2005 May;163(2):252-7. doi: 10.1007/s00221-005-2229-6. Epub 2005 Mar 8.
9
Incomplete posture adjustment during rapid arm movement.
Percept Mot Skills. 2009 Jun;108(3):915-32. doi: 10.2466/PMS.108.3.915-932.
10
Equilibrium-point control hypothesis examined by measured arm stiffness during multijoint movement.
Science. 1996 Apr 5;272(5258):117-20. doi: 10.1126/science.272.5258.117.

引用本文的文献

1
Viscous damping of tremor using a wearable robot with an optimized mechanical metamaterial.
Wearable Technol. 2024 Dec 10;5:e20. doi: 10.1017/wtc.2024.15. eCollection 2024.
2
Human-in-the-Loop Modeling and Bilateral Skill Transfer Control of Soft Exoskeleton.
Sensors (Basel). 2024 Dec 8;24(23):7845. doi: 10.3390/s24237845.
3
Tele-Impedance control of a virtual avatar based on EMG and M-IMU sensors: a proof-of-concept.
Sci Rep. 2024 Aug 9;14(1):18543. doi: 10.1038/s41598-024-68232-x.
5
sEMG-Based Natural Control Interface for a Variable Stiffness Transradial Hand Prosthesis.
Front Neurorobot. 2022 Mar 11;16:789341. doi: 10.3389/fnbot.2022.789341. eCollection 2022.
6
Variable Impedance Control Based on Target Position and Tracking Error for Rehabilitation Robots During a Reaching Task.
Front Neurorobot. 2022 Mar 3;16:850692. doi: 10.3389/fnbot.2022.850692. eCollection 2022.
8
The Concurrent Control of Motion and Contact Force in the Presence of Predictable Disturbances.
J Mech Robot. 2019 Dec 1;11(6):060903. doi: 10.1115/1.4044599. Epub 2019 Sep 11.
9
Estimation of Involuntary Components of Human Arm Impedance in Multi-Joint Movements via Feedback Jerk Isolation.
Front Neurosci. 2020 May 25;14:459. doi: 10.3389/fnins.2020.00459. eCollection 2020.
10
Estimating Human Wrist Stiffness during a Tooling Task.
Sensors (Basel). 2020 Jun 8;20(11):3260. doi: 10.3390/s20113260.

本文引用的文献

1
Does the nervous system use equilibrium-point control to guide single and multiple joint movements?
Behav Brain Sci. 1992 Dec;15(4):603-13. doi: 10.1017/S0140525X00072538.
2
Human arm stiffness and equilibrium-point trajectory during multi-joint movement.
Biol Cybern. 1997 Mar;76(3):163-71. doi: 10.1007/s004220050329.
3
Inhibitory projection from brachioradialis to biceps brachii motoneurones in human.
Exp Brain Res. 1996 Oct;111(3):483-6. doi: 10.1007/BF00228739.
4
The control of stable postures in the multijoint arm.
Exp Brain Res. 1996 Jul;110(2):248-64. doi: 10.1007/BF00228556.
5
Equilibrium-point control hypothesis examined by measured arm stiffness during multijoint movement.
Science. 1996 Apr 5;272(5258):117-20. doi: 10.1126/science.272.5258.117.
6
Time-varying mechanical behavior of multijointed arm in man.
J Neurophysiol. 1993 May;69(5):1443-64. doi: 10.1152/jn.1993.69.5.1443.
8
Human hand impedance characteristics during maintained posture.
Biol Cybern. 1995;72(6):475-85. doi: 10.1007/BF00199890.
9
Dynamics of human ankle stiffness: variation with mean ankle torque.
J Biomech. 1982;15(10):747-52. doi: 10.1016/0021-9290(82)90089-6.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验