Suppr超能文献

II类氨酰-tRNA合成酶的水解编辑作用。

Hydrolytic editing by a class II aminoacyl-tRNA synthetase.

作者信息

Beuning P J, Musier-Forsyth K

机构信息

Department of Chemistry, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, MN 55455, USA.

出版信息

Proc Natl Acad Sci U S A. 2000 Aug 1;97(16):8916-20. doi: 10.1073/pnas.97.16.8916.

Abstract

Editing reactions catalyzed by aminoacyl-tRNA synthetases are critical for accurate translation of the genetic code. To date, this activity, whereby misactivated amino acids are hydrolyzed either before or after transfer to noncognate tRNAs, has been characterized extensively only in the case of class I synthetases. Class II synthetases have an active-site architecture that is completely distinct from that of class I. Thus, findings on editing by class I synthetases may not be applicable generally to class II enzymes. Class II Escherichia coli proline-tRNA synthetase is shown here to misactivate alanine and to hydrolyze the noncognate amino acid before transfer to tRNA(Pro). This enzyme also is capable of rapidly deacylating a mischarged Ala-tRNA(Pro) variant. A single cysteine residue (C443) that is located within the class II-specific motif 3 consensus sequence was shown previously to be dispensable for proline-tRNA synthetase aminoacylation activity. We show here that C443 is critical for the hydrolytic editing of Ala-tRNA(Pro) by this class II synthetase.

摘要

氨酰-tRNA合成酶催化的校正反应对于遗传密码的准确翻译至关重要。迄今为止,这种在错误激活的氨基酸转移到非同源tRNA之前或之后将其水解的活性,仅在I类合成酶的情况下得到了广泛表征。II类合成酶具有与I类完全不同的活性位点结构。因此,I类合成酶的校正研究结果可能并不普遍适用于II类酶。本文表明,II类大肠杆菌脯氨酸-tRNA合成酶会错误激活丙氨酸,并在将其转移到tRNA(Pro)之前水解非同源氨基酸。这种酶还能够快速使错误负载的Ala-tRNA(Pro)变体脱酰基。先前已表明,位于II类特异性基序3共有序列内的单个半胱氨酸残基(C443)对于脯氨酸-tRNA合成酶的氨酰化活性是可有可无的。我们在此表明,C443对于这种II类合成酶对Ala-tRNA(Pro)的水解校正至关重要。

相似文献

1
Hydrolytic editing by a class II aminoacyl-tRNA synthetase.
Proc Natl Acad Sci U S A. 2000 Aug 1;97(16):8916-20. doi: 10.1073/pnas.97.16.8916.
2
An isolated class II aminoacyl-tRNA synthetase insertion domain is functional in amino acid editing.
J Biol Chem. 2003 Dec 26;278(52):52857-64. doi: 10.1074/jbc.M309627200. Epub 2003 Oct 6.
4
Transfer RNA modulates the editing mechanism used by class II prolyl-tRNA synthetase.
J Biol Chem. 2008 Mar 14;283(11):7128-34. doi: 10.1074/jbc.M709902200. Epub 2008 Jan 7.
5
Species-specific differences in amino acid editing by class II prolyl-tRNA synthetase.
J Biol Chem. 2001 Aug 17;276(33):30779-85. doi: 10.1074/jbc.M104761200. Epub 2001 Jun 14.
7
9
Partitioning of tRNA-dependent editing between pre- and post-transfer pathways in class I aminoacyl-tRNA synthetases.
J Biol Chem. 2010 Jul 30;285(31):23799-809. doi: 10.1074/jbc.M110.133553. Epub 2010 May 24.
10
An aminoacyl-tRNA synthetase with a defunct editing site.
Biochemistry. 2005 Mar 1;44(8):3010-6. doi: 10.1021/bi047901v.

引用本文的文献

1
Unexpected enzymatic function of an ancient nucleic acid-binding fold.
Nucleic Acids Res. 2025 Apr 22;53(8). doi: 10.1093/nar/gkaf328.
2
Automated orthogonal tRNA generation.
Nat Chem Biol. 2025 May;21(5):657-667. doi: 10.1038/s41589-024-01782-3. Epub 2024 Dec 20.
3
Kinetic characterization of amino acid activation by aminoacyl-tRNA synthetases using radiolabelled γ-[P]ATP.
FEBS Open Bio. 2025 Apr;15(4):580-586. doi: 10.1002/2211-5463.13903. Epub 2024 Sep 30.
4
NMR-based solution structure of the Caulobacter crescentus ProXp-ala trans-editing enzyme.
Biomol NMR Assign. 2024 Dec;18(2):233-238. doi: 10.1007/s12104-024-10193-3. Epub 2024 Aug 31.
5
Dynamics of diversified A-to-I editing in Streptococcus pyogenes is governed by changes in mRNA stability.
Nucleic Acids Res. 2024 Oct 14;52(18):11234-11253. doi: 10.1093/nar/gkae629.
6
multi-aminoacyl-tRNA synthetase complex formation limits promiscuous tRNA proofreading.
Front Microbiol. 2024 Jul 16;15:1445687. doi: 10.3389/fmicb.2024.1445687. eCollection 2024.
7
Genome-wide screening reveals metabolic regulation of stop-codon readthrough by cyclic AMP.
Nucleic Acids Res. 2023 Oct 13;51(18):9905-9919. doi: 10.1093/nar/gkad725.
8
Structural basis of tRNAPro acceptor stem recognition by a bacterial trans-editing domain.
Nucleic Acids Res. 2023 May 8;51(8):3988-3999. doi: 10.1093/nar/gkad192.
10
Amino Acid Specificity of Ancestral Aminoacyl-tRNA Synthetase Prior to the Last Universal Common Ancestor Commonote commonote.
J Mol Evol. 2022 Feb;90(1):73-94. doi: 10.1007/s00239-021-10043-z. Epub 2022 Jan 27.

本文引用的文献

1
Incorrect heterologous aminoacylation of various yeast tRNAS catalysed by E. coli valyl-tRNA synthetase.
FEBS Lett. 1971 Jul 1;15(4):281-285. doi: 10.1016/0014-5793(71)80638-5.
2
Zinc ion mediated amino acid discrimination by threonyl-tRNA synthetase.
Nat Struct Biol. 2000 Jun;7(6):461-5. doi: 10.1038/75856.
3
Role of zinc ion in translational accuracy becomes crystal clear.
Nat Struct Biol. 2000 Jun;7(6):435-6. doi: 10.1038/75816.
4
CP1 domain in Escherichia coli leucyl-tRNA synthetase is crucial for its editing function.
Biochemistry. 2000 Jun 6;39(22):6726-31. doi: 10.1021/bi000108r.
5
Nucleotide determinants for tRNA-dependent amino acid discrimination by a class I tRNA synthetase.
Biochemistry. 1999 Dec 21;38(51):16898-903. doi: 10.1021/bi9920782.
8
Misacylation of tRNALys with noncognate amino acids by lysyl-tRNA synthetase.
Biochemistry. 1999 Jun 22;38(25):8088-93. doi: 10.1021/bi990629i.
9
Universal rules and idiosyncratic features in tRNA identity.
Nucleic Acids Res. 1998 Nov 15;26(22):5017-35. doi: 10.1093/nar/26.22.5017.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验