Suppr超能文献

使用序列特异性引物延伸和荧光相关光谱法进行高保真单核苷酸多态性基因分型。

High fidelity SNP genotyping using sequence-specific primer elongation and fluorescence correlation spectroscopy.

作者信息

Hori K, Shin W S, Hemmi C, Toyo-oka T, Makino T

机构信息

NovusGene Inc., 2-3 Kuboyama-cho, Hachioji-shi, Tokyo 192-8512, Japan.

出版信息

Curr Pharm Biotechnol. 2003 Dec;4(6):477-84. doi: 10.2174/1389201033377391.

Abstract

Reliable, efficient and cost-effective modalities are urgently needed for mass screening of gene mutations. Previous reports have shown that SSCP or genechip methods require substantial time and monetary costs, thus limiting their appeal. Sequence Specific Primer Polymerase Chain Reaction (SSP-PCR) is a reliable and cost-effective method that utilizes the 3'-end discrimination properties of polymerase. However, the applicability of conventional SSP-PCR is limited due to the difficulties associated with determining optimal conditions and because mis-matched primers are amplified, resulting in signal noise during end-point assay. To overcome this problem, we eliminated the reverse primers from SSP-PCR, thus preventing amplification of mis-matched primers. We designated this method Sequence-Specific Primer Cycle Elongation (SSPCE). However, the detection of elongated sequence specific primers was difficult using conventional electrophoresis due to the small amounts of amplification product present. We therefore combined SSPCE and Fluorescence Correlation Spectroscopy, which is a novel technique used to determine the number and size of fluorophores at nano-molar concentrations, and designated the method SSPCE-FCS. We compared conventional SSP-PCR and SSPCE-FCS with regard to determining optimal conditions using two Mitochondrial SNPs (G --> A at position 1598, G --> A at position 12192). We were able to determine the optimal conditions for the SNP at position 1598 using either method. However, optimal conditions could only be determined for SSPCE-FCS with the 12192 mutation because non-specific amplification was observed at a wide range of annealing temperatures in SSP-PCR. We then applied this method to three other SNPs and the results were consistent with the results of sequencing data.

摘要

大规模筛查基因突变迫切需要可靠、高效且经济高效的方法。先前的报告表明,单链构象多态性(SSCP)或基因芯片方法需要大量的时间和金钱成本,因此限制了它们的吸引力。序列特异性引物聚合酶链反应(SSP-PCR)是一种可靠且经济高效的方法,它利用了聚合酶的3'末端识别特性。然而,传统SSP-PCR的适用性受到限制,这是由于确定最佳条件存在困难,并且错配引物会被扩增,从而在终点测定时产生信号噪声。为了克服这个问题,我们从SSP-PCR中去除了反向引物,从而防止错配引物的扩增。我们将这种方法命名为序列特异性引物循环延伸(SSPCE)。然而,由于存在的扩增产物量少,使用传统电泳很难检测到延伸的序列特异性引物。因此,我们将SSPCE与荧光相关光谱法相结合,荧光相关光谱法是一种用于确定纳摩尔浓度下荧光团数量和大小的新技术,并将该方法命名为SSPCE-FCS。我们使用两个线粒体单核苷酸多态性(1598位G→A,12192位G→A)比较了传统SSP-PCR和SSPCE-FCS在确定最佳条件方面的情况。我们能够使用任何一种方法确定1598位单核苷酸多态性的最佳条件。然而,对于12192位突变,只有SSPCE-FCS能够确定最佳条件,因为在SSP-PCR中,在很宽的退火温度范围内都观察到了非特异性扩增。然后我们将该方法应用于其他三个单核苷酸多态性,结果与测序数据的结果一致。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验