Suppr超能文献

用于大分子数据库虚拟配体筛选的HierVLS分层对接协议。

HierVLS hierarchical docking protocol for virtual ligand screening of large-molecule databases.

作者信息

Floriano Wely B, Vaidehi Nagarajan, Zamanakos Georgios, Goddard William A

机构信息

Materials and Process Simulation Center (MSC), California Institute of Technology, Pasadena, California 91125, USA.

出版信息

J Med Chem. 2004 Jan 1;47(1):56-71. doi: 10.1021/jm030271v.

Abstract

To provide practical means for rapidly scanning the extensive experimental combinatorial chemistry libraries now available for high-throughput screening (HTS), it is essential to establish computational virtual ligand screening (VLS) techniques to rapidly identify out of a large library all active compounds against a particular protein target. Toward this goal we developed HierVLS, a fast hierarchical docking approach that starts with a coarse grain conformational search over a large number of configurations filtered with a fast but crude energy function, followed by a succession of finer grain levels, using successively more accurate but more expensive descriptions of the ligand-protein-solvent interactions to filter successively fewer cases. The final step of this procedure optimizes one configuration of the ligand in the protein site using our most accurate energy expression and description of the solvent, which would be impractical for all conformations and sites sampled in the coarse level. HierVLS is based on the HierDock approach, but rather than allowing an hour or more to determine the best binding site and energy for each ligands (as in HierDock), we have adapted our procedure so that it can lead to reliable results while using only 4 min (866 MHz Pentium III processor) per ligand. To validate the accuracy for HierVLS to predict the experimentally observed binding conformation, we considered 37 cocrystal structures comprising 11 target proteins. We find that HierVLS identifies the correct binding mode for all 37 cocrystals. In addition, the calculated binding energies correlate well with available experimental binding constants. To validate how well HierVLS can identify the correct ligand in an extensive library of decoys, we considered a library of over 10 000 molecules. HierVLS identifies 26 out of the 37 cases in the top 2% ranked by binding affinity among the 10 037 molecules. The failures result from either metal-containing sites on the protein or water-mediated ligand-protein interactions, which we anticipate can be solved within the constraints of practical VLS. We then applied HierVLS to screen a 55000-compound virtual library against the target protein-tyrosine phosphatase 1B (ptp1b). The top 250 compounds by binding affinity included all six ptp1b cocrystal ligands added to the library plus three other experimentally confirmed binders. The best (top 1) binder is an experimentally confirmed positive. We conclude that HierVLS is useful for selecting leads for a particular target out of large combinatorial databases.

摘要

为了提供实用的方法来快速扫描目前可用于高通量筛选(HTS)的大量实验性组合化学文库,建立计算虚拟配体筛选(VLS)技术以从大型文库中快速识别出针对特定蛋白质靶点的所有活性化合物至关重要。为了实现这一目标,我们开发了HierVLS,这是一种快速的分层对接方法,它首先对大量构型进行粗粒度构象搜索,这些构型通过一个快速但粗糙的能量函数进行筛选,随后是一系列更细粒度的层次,使用越来越精确但成本更高的配体 - 蛋白质 - 溶剂相互作用描述来依次筛选越来越少的情况。该过程的最后一步使用我们最精确的能量表达式和溶剂描述来优化蛋白质位点中配体的一种构型,这对于在粗粒度水平上采样的所有构象和位点来说是不切实际的。HierVLS基于HierDock方法,但我们不是像在HierDock中那样让每个配体花费一个小时或更多时间来确定最佳结合位点和能量,而是调整了我们的程序,使其在每个配体仅使用4分钟(866 MHz奔腾III处理器)的情况下就能得出可靠的结果。为了验证HierVLS预测实验观察到的结合构象的准确性,我们考虑了包含11个靶蛋白的37个共晶体结构。我们发现HierVLS识别出了所有37个共晶体的正确结合模式。此外,计算得到的结合能与可用的实验结合常数相关性良好。为了验证HierVLS在大量诱饵文库中识别正确配体的能力,我们考虑了一个超过10000个分子的文库。在10037个分子中,按结合亲和力排名前2%的37个案例中,HierVLS识别出了26个。失败的原因要么是蛋白质上含金属的位点,要么是水介导的配体 - 蛋白质相互作用,我们预计在实际VLS的限制范围内可以解决这些问题。然后我们应用HierVLS针对靶蛋白 - 酪氨酸磷酸酶1B(ptp1b)筛选一个55000化合物的虚拟文库。按结合亲和力排名前250的化合物包括添加到文库中的所有六个ptp1b共晶体配体以及其他三个经实验证实的结合剂。最佳(排名第一)结合剂是经实验证实的阳性。我们得出结论,HierVLS对于从大型组合数据库中为特定靶点选择先导化合物很有用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验