Hatlevik Øyvind, Blanksma Mary C, Mathrubootham Vaidyanathan, Arif Atta M, Hegg Eric L
Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT 84112-0850, USA.
J Biol Inorg Chem. 2004 Mar;9(2):238-46. doi: 10.1007/s00775-003-0518-8. Epub 2004 Jan 21.
Carbon monoxide dehydrogenase/acetyl-CoA synthase (CODH/ACS) utilizes a unique Ni-M bimetallic site in the biosynthesis of acetyl-CoA, where a square-planar Ni ion is coordinated to two thiolates and two deprotonated amides in a Cys-Gly-Cys motif. The identity of M is currently a matter of debate, although both Cu and Ni have been proposed. In an effort to model ACS's unusual active site and to provide insight into the mechanism of acetyl-CoA formation and the role of each of the metals ions, we have prepared and structurally characterized a number of Ni(II)-peptide mimic complexes. The mononuclear complexes Ni(II) N, N'-bis(2-mercaptoethyl)oxamide (1), Ni(II) N, N'-ethylenebis(2-mercaptoacetamide) (2), and Ni(II) N, N'-ethylenebis(2-mercaptopropionamide) (3) model the Ni(Cys-Gly-Cys) site and can be used as synthons for additional multinuclear complexes. Reaction of 2 with MeI resulted in the alkylation of the sulfur atoms and the formation of Ni(II) N, N'-ethylenebis(2-methylmercaptoacetamide) (4), demonstrating the nucleophilicity of the terminal alkyl thiolates. Addition of Ni(OAc)(2).4H(2)O to3 resulted in the formation of a trinuclear species (5), while 2 crystallizes as an unusual paddlewheel complex (6) in the presence of nickel acetate. The difference in reactivity between the similar complexes 2 and 3 highlights the importance of ligand design when synthesizing models of ACS. Significantly,5 maintains the key features observed in the active site of ACS, namely a square-planar Ni coordinated to two deprotonated amides and two thiolates, where the thiolates bridge to a second metal, suggesting that 5 is a reasonable structural model for this unique enzyme.
一氧化碳脱氢酶/乙酰辅酶A合酶(CODH/ACS)在乙酰辅酶A的生物合成过程中利用了一个独特的镍-金属双位点,其中一个平面正方形镍离子与一个半胱氨酸-甘氨酸-半胱氨酸基序中的两个硫醇盐和两个去质子化酰胺配位。目前,金属M的身份存在争议,尽管有人提出是铜或镍。为了模拟ACS不同寻常的活性位点,并深入了解乙酰辅酶A的形成机制以及每种金属离子的作用,我们制备并对一些镍(II)-肽模拟配合物进行了结构表征。单核配合物镍(II)N,N'-双(2-巯基乙基)草酰胺(1)、镍(II)N,N'-亚乙基双(2-巯基乙酰胺)(2)和镍(II)N,N'-亚乙基双(2-巯基丙酰胺)(3)模拟了镍(半胱氨酸-甘氨酸-半胱氨酸)位点,可作为合成其他多核配合物的合成子。2与甲基碘反应导致硫原子烷基化并形成镍(II)N,N'-亚乙基双(2-甲基巯基乙酰胺)(4),证明了末端烷基硫醇盐的亲核性。向3中加入醋酸镍(II)·4H₂O导致形成一个三核物种(5),而2在醋酸镍存在下结晶为一种不寻常的桨轮状配合物(6)。相似配合物2和3之间反应活性的差异突出了在合成ACS模型时配体设计的重要性。重要的是,5保留了在ACS活性位点观察到的关键特征,即一个平面正方形镍与两个去质子化酰胺和两个硫醇盐配位,其中硫醇盐桥连到第二种金属,这表明5是这种独特酶的一个合理结构模型。