Suppr超能文献

线粒体硫氧还蛋白系统:硫氧还蛋白还原酶2过表达对氧化还原平衡、细胞生长和细胞凋亡的影响

Mitochondrial thioredoxin system: effects of TrxR2 overexpression on redox balance, cell growth, and apoptosis.

作者信息

Patenaude Alexandre, Ven Murthy M R, Mirault Marc-Edouard

机构信息

Department of Medicine, Faculty of Medicine, Laval University, and CHUL/CHUQ Medical Research Center, Quebec City, Quebec G1V 4G2, Canada.

出版信息

J Biol Chem. 2004 Jun 25;279(26):27302-14. doi: 10.1074/jbc.M402496200. Epub 2004 Apr 13.

Abstract

Thioredoxin-2 (Trx2) is a mitochondrial protein-disulfide oxidoreductase essential for control of cell survival during mammalian embryonic development. This suggests that mitochondrial thioredoxin reductase-2 (TrxR2), responsible for reducing oxidized Trx2, may also be a key player in the regulation of mitochondria-dependent apoptosis. With this in mind, we investigated the effects of overexpression of TrxR2, Trx2, or both on mammalian cell responses to various apoptotic inducers. Stable transfectants of mouse Neuro2A cells were generated that overexpressed TrxR2 or an EGFP-TrxR2 fusion protein. EGFP-TrxR2 was enzymatically active and was localized in mitochondria. TrxR2 protein level and TrxR activity could be increased up to 6-fold in mitochondria. TrxR2 and EGFP-TrxR2 transfectants showed reduced growth rates as compared with control cells. This growth alteration was not due to cytotoxic effects nor related to changes in basal mitochondrial transmembrane potential (DeltaPsi(m)), reactive oxygen species production, or to other mitochondrial antioxidant components such as Trx2, peroxyredoxin-3, MnSOD, GPx1, and glutathione whose levels were not affected by increased TrxR2 activity. In response to various apoptotic inducers, the extent of DeltaPsi(m) dissipation, reactive oxygen species induction, caspase activation, and loss of viability were remarkably similar in TrxR2 and control transfectants. Excess TrxR2 did not prevent trichostatin A-mediated neuronal differentiation of Neuro2A cells nor did it protect them against beta-amyloid neurotoxicity. Neither massive glutathione depletion nor co-transfection of Trx2 and TrxR2 in Neuro2A (mouse), COS-7 (monkey), or HeLa (human) cells revealed any differential cellular resistance to prooxidant or non-oxidant apoptotic stimuli. Our results suggest that neither Trx2 nor TrxR2 gain of function modified the redox regulation of mitochondria-dependent apoptosis in these mammalian cells.

摘要

硫氧还蛋白-2(Trx2)是一种线粒体蛋白二硫键氧化还原酶,对哺乳动物胚胎发育过程中细胞存活的控制至关重要。这表明负责还原氧化型Trx2的线粒体硫氧还蛋白还原酶-2(TrxR2)可能也是线粒体依赖性凋亡调控中的关键因子。基于此,我们研究了TrxR2、Trx2或两者过表达对哺乳动物细胞对各种凋亡诱导剂反应的影响。构建了稳定转染的小鼠Neuro2A细胞系,其过表达TrxR2或EGFP-TrxR2融合蛋白。EGFP-TrxR2具有酶活性且定位于线粒体。线粒体中TrxR2蛋白水平和TrxR活性可提高至6倍。与对照细胞相比,TrxR2和EGFP-TrxR2转染细胞的生长速率降低。这种生长改变并非由于细胞毒性作用,也与基础线粒体跨膜电位(ΔΨm)、活性氧生成的变化无关,也与其他线粒体抗氧化成分如Trx2、过氧化物还原酶-3、锰超氧化物歧化酶、谷胱甘肽过氧化物酶1和谷胱甘肽无关,其水平不受TrxR2活性增加的影响。在对各种凋亡诱导剂的反应中,TrxR2转染细胞和对照转染细胞中ΔΨm消散、活性氧诱导、半胱天冬酶激活和活力丧失的程度非常相似。过量的TrxR2既不能阻止曲古抑菌素A介导的Neuro2A细胞神经元分化,也不能保护它们免受β-淀粉样蛋白神经毒性的影响。在Neuro2A(小鼠)、COS-7(猴)或HeLa(人)细胞中,大量谷胱甘肽耗竭以及Trx2和TrxR2共转染均未显示出对促氧化剂或非氧化剂凋亡刺激的任何细胞抗性差异。我们的结果表明,Trx2或TrxR2功能增强均未改变这些哺乳动物细胞中线粒体依赖性凋亡的氧化还原调控。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验