Suppr超能文献

亚细胞区室中的谷胱甘肽动力学及其对药物开发的影响。

Glutathione dynamics in subcellular compartments and implications for drug development.

作者信息

Lin Hanfeng, Wang Lingfei, Jiang Xiqian, Wang Jin

机构信息

Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA; Center for NextGen Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA.

Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA.

出版信息

Curr Opin Chem Biol. 2024 Aug;81:102505. doi: 10.1016/j.cbpa.2024.102505. Epub 2024 Jul 24.

Abstract

Glutathione (GSH) is a pivotal tripeptide antioxidant essential for maintaining cellular redox homeostasis and regulating diverse cellular processes. Subcellular compartmentalization of GSH underscores its multifaceted roles across various organelles including the cytosol, mitochondria, endoplasmic reticulum, and nucleus, each exhibiting distinct regulatory mechanisms. Perturbations in GSH dynamics contribute to pathophysiological conditions, emphasizing the clinical significance of understanding its intricate regulation. This review consolidates current knowledge on subcellular GSH dynamics, highlighting its implications in drug development, particularly in covalent drug design and antitumor strategies targeting intracellular GSH levels. Challenges and future directions in deciphering subcellular GSH dynamics are discussed, advocating for innovative methodologies to advance our comprehension and facilitate the development of precise therapeutic interventions based on GSH modulation.

摘要

谷胱甘肽(GSH)是一种关键的三肽抗氧化剂,对于维持细胞氧化还原稳态和调节多种细胞过程至关重要。GSH的亚细胞区室化突出了其在包括细胞质、线粒体、内质网和细胞核在内的各种细胞器中的多方面作用,每个细胞器都表现出独特的调节机制。GSH动态变化的扰动会导致病理生理状况,这凸显了理解其复杂调节的临床意义。本综述整合了关于亚细胞GSH动态变化的当前知识,强调了其在药物开发中的意义,特别是在共价药物设计和针对细胞内GSH水平的抗肿瘤策略方面。讨论了解析亚细胞GSH动态变化的挑战和未来方向,倡导采用创新方法来增进我们的理解,并促进基于GSH调节的精确治疗干预措施的开发。

相似文献

1
Glutathione dynamics in subcellular compartments and implications for drug development.
Curr Opin Chem Biol. 2024 Aug;81:102505. doi: 10.1016/j.cbpa.2024.102505. Epub 2024 Jul 24.
2
Redox-sensitive YFP sensors monitor dynamic nuclear and cytosolic glutathione redox changes.
Free Radic Biol Med. 2012;52(11-12):2254-65. doi: 10.1016/j.freeradbiomed.2012.04.004. Epub 2012 Apr 17.
4
Quantitative Real-Time Imaging of Glutathione with Subcellular Resolution.
Antioxid Redox Signal. 2019 Jun 1;30(16):1900-1910. doi: 10.1089/ars.2018.7605. Epub 2018 Dec 20.
5
The Unfinished Puzzle of Glutathione Physiological Functions, an Old Molecule That Still Retains Many Enigmas.
Antioxid Redox Signal. 2017 Nov 20;27(15):1127-1129. doi: 10.1089/ars.2017.7230.
6
Glutathione--linking cell proliferation to oxidative stress.
Free Radic Biol Med. 2015 Dec;89:1154-64. doi: 10.1016/j.freeradbiomed.2015.09.023. Epub 2015 Nov 3.
8
A locally activatable sensor for robust quantification of organellar glutathione.
Nat Chem. 2023 Oct;15(10):1415-1421. doi: 10.1038/s41557-023-01249-3. Epub 2023 Jun 15.
9
Functions and cellular compartmentation of the thioredoxin and glutathione pathways in yeast.
Antioxid Redox Signal. 2013 May 1;18(13):1699-711. doi: 10.1089/ars.2012.5033. Epub 2013 Feb 5.

引用本文的文献

3
Antioxidant nanozymes: current status and future perspectives in spinal cord injury treatments.
Theranostics. 2025 May 8;15(13):6146-6183. doi: 10.7150/thno.114836. eCollection 2025.
4
Redox Homeostasis within the Drug-Resistant Malarial Parasite Digestive Vacuole.
Biochemistry. 2025 May 20;64(10):2247-2261. doi: 10.1021/acs.biochem.4c00750. Epub 2025 May 1.
5
Unraveling the triad of immunotherapy, tumor microenvironment, and skeletal muscle biomechanics in oncology.
Front Immunol. 2025 Apr 2;16:1572821. doi: 10.3389/fimmu.2025.1572821. eCollection 2025.

本文引用的文献

1
Pharmacological activation of GPX4 ameliorates doxorubicin-induced cardiomyopathy.
Redox Biol. 2024 Apr;70:103024. doi: 10.1016/j.redox.2023.103024. Epub 2024 Jan 10.
3
Autoregulatory control of mitochondrial glutathione homeostasis.
Science. 2023 Nov 17;382(6672):820-828. doi: 10.1126/science.adf4154. Epub 2023 Nov 2.
4
Covalent Targeting of Glutamate Cysteine Ligase to Inhibit Glutathione Synthesis.
Chembiochem. 2023 Dec 1;24(23):e202300371. doi: 10.1002/cbic.202300371. Epub 2023 Oct 12.
5
Structure-Reactivity Studies of 2-Sulfonylpyrimidines Allow Selective Protein Arylation.
Bioconjug Chem. 2023 Sep 20;34(9):1679-1687. doi: 10.1021/acs.bioconjchem.3c00322. Epub 2023 Sep 1.
6
A locally activatable sensor for robust quantification of organellar glutathione.
Nat Chem. 2023 Oct;15(10):1415-1421. doi: 10.1038/s41557-023-01249-3. Epub 2023 Jun 15.
7
Cellular Compartmentalization, Glutathione Transport and Its Relevance in Some Pathologies.
Antioxidants (Basel). 2023 Mar 29;12(4):834. doi: 10.3390/antiox12040834.
8
Actin cytoskeleton vulnerability to disulfide stress mediates disulfidptosis.
Nat Cell Biol. 2023 Mar;25(3):404-414. doi: 10.1038/s41556-023-01091-2. Epub 2023 Feb 6.
9
Structures of Atm1 provide insight into [2Fe-2S] cluster export from mitochondria.
Nat Commun. 2022 Jul 27;13(1):4339. doi: 10.1038/s41467-022-32006-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验