Suppr超能文献

过渡金属硫醇盐配合物亲核性的电子结构控制:一项实验与理论研究。

Electronic structure control of the nucleophilicity of transition metal-thiolate complexes: an experimental and theoretical study.

作者信息

Fox Derek C, Fiedler Adam T, Halfen Heather L, Brunold Thomas C, Halfen Jason A

机构信息

Department of Chemistry, University of Wisconsin-Madison, 1101 West University Avenue, Madison, Wisconsin 53706, USA.

出版信息

J Am Chem Soc. 2004 Jun 23;126(24):7627-38. doi: 10.1021/ja039419q.

Abstract

New metal(II)-thiolate complexes supported by the tetradentate ligand 1,5-bis(2-pyridylmethyl)-1,5-diazacyclooctane (L(8)py(2)) have been synthesized and subjected to physical, spectroscopic, structural, and computational characterization. The X-ray crystal structures of these complexes, [L(8)py(2)M(S-C(6)H(4)-p-CH(3))]BPh(4) (M = Co, Ni, Zn), reveal distorted square-pyramidal divalent metal ions with four equatorial nitrogen donors from L(8)py(2) and axial p-toluenethiolate ligands. The reactions of the complexes with benzyl bromide produce isolable metal(II)-bromide complexes (in the cases of Co and Ni) and the thioether benzyl-p-tolylsulfide. This reaction is characterized by a second-order rate law (nu = k(2)[L(8)py(2)M(SAr)(+)][PhCH(2)Br]) for all complexes (where M = Fe, Co, Ni, or Zn). Of particular significance is the disparity between k(2) for M = Fe and Co versus k(2) for M = Ni and Zn, in that k(2) for M = Ni and Zn is ca. 10 times larger (faster) than k(2) for M = Fe and Co. An Eyring analysis of k(2) for L(8)py(2)Co(SAr) and L(8)py(2)Ni(SAr) reveals that the reaction rate differences are not rooted in a change in mechanism, as the reactions of these complexes with benzyl bromide exhibit comparable activation parameters (M = Co: DeltaH() = 45(2) kJ mol(-)(1), DeltaS() = -144(6) J mol(-)(1) K(-)(1); M = Ni: DeltaH() = 43(3) kJ mol(-)(1), DeltaS() = -134(8) J mol(-)(1) K(-)(1)). Electronic structure calculations using density functional theory (DFT) reveal that the enhanced reaction rate for L(8)py(2)Ni(SAr) is rooted in a four-electron repulsion (or a "filled/filled interaction") between a completely filled nickel(II) d(pi) orbital and one of the two thiolate frontier orbitals, a condition that is absent in the Fe(II) and Co(II) complexes. The comparable reactivity of L(8)py(2)Zn(SAr) relative to that of L(8)py(2)Ni(SAr) arises from a highly ionic zinc(II)-thiolate bond that enhances the negative charge density on the thiolate sulfur. DFT calculations on putative thioether-coordinated intermediates reveal that the Co(II)- and Zn(II)-thioethers exhibit weaker M-S bonding than Ni(II). These combined results suggest that while Ni(II) may serve as a competent replacement for Zn(II) in alkyl group transfer enzymes, turnover may be limited by slow product release from the Ni(II) center.

摘要

已合成了由四齿配体1,5 - 双(2 - 吡啶甲基)-1,5 - 二氮杂环辛烷(L(8)py(2))支撑的新型金属(II)硫醇盐配合物,并对其进行了物理、光谱、结构和计算表征。这些配合物[L(8)py(2)M(S - C(6)H(4) - p - CH(3))]BPh(4)(M = Co、Ni、Zn)的X射线晶体结构显示,二价金属离子呈扭曲的四方锥构型,有来自L(8)py(2)的四个赤道面氮供体和轴向对甲苯硫醇盐配体。配合物与苄基溴的反应生成了可分离的金属(II)溴化物配合物(对于Co和Ni的情况)以及硫醚苄基 - 对甲苯基硫醚。该反应对于所有配合物(其中M = Fe、Co、Ni或Zn)均符合二级速率定律(ν = k(2)[L(8)py(2)M(SAr)(+)][PhCH(2)Br])。特别重要的是,M = Fe和Co时的k(2)与M = Ni和Zn时的k(2)之间存在差异,即M = Ni和Zn时的k(2)约比M = Fe和Co时的k(2)大10倍(更快)。对L(8)py(2)Co(SAr)L(8)py(2)Ni(SAr)的k(2)进行艾林分析表明,反应速率差异并非源于反应机理的改变,因为这些配合物与苄基溴的反应表现出相当的活化参数(M = Co:ΔH() = 45(2) kJ mol(-)(1),ΔS() = -144(6) J mol(-)(1) K(-)(1);M = Ni:ΔH() = 43(3) kJ mol(-)(1),ΔS() = -134(8) J mol(-)(1) K(-)(1))。使用密度泛函理论(DFT)进行的电子结构计算表明,L(8)py(2)Ni(SAr)反应速率增强的根源在于完全填充的镍(II)d(π)轨道与两个硫醇盐前沿轨道之一之间的四电子排斥(或“填充/填充相互作用”),而这种情况在Fe(II)和Co(II)配合物中不存在。L(8)py(2)Zn(SAr)相对于L(8)py(2)Ni(SAr)具有相当的反应活性,这源于高度离子性的锌(II) - 硫醇盐键,该键增强了硫醇盐硫上的负电荷密度。对假定的硫醚配位中间体进行的DFT计算表明,Co(II) - 和Zn(II) - 硫醚的M - S键比Ni(II)的弱。这些综合结果表明,虽然Ni(II)在烷基转移酶中可能是Zn(II)的有效替代物,但周转率可能会受到Ni(II)中心产物释放缓慢的限制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验