Suppr超能文献

依赖RAD51的断裂诱导复制在动力学和检查点反应方面与RAD51介导的基因转换不同。

RAD51-dependent break-induced replication differs in kinetics and checkpoint responses from RAD51-mediated gene conversion.

作者信息

Malkova Anna, Naylor Maria L, Yamaguchi Miyuki, Ira Grzegorz, Haber James E

机构信息

Rosenstiel Center, Brandeis University, 415 South St., Mail Stop 029, Waltham, MA 02454-9110, USA.

出版信息

Mol Cell Biol. 2005 Feb;25(3):933-44. doi: 10.1128/MCB.25.3.933-944.2005.

Abstract

Diploid Saccharomyces cells experiencing a double-strand break (DSB) on one homologous chromosome repair the break by RAD51-mediated gene conversion >98% of the time. However, when extensive homologous sequences are restricted to one side of the DSB, repair can occur by both RAD51-dependent and RAD51-independent break-induced replication (BIR) mechanisms. Here we characterize the kinetics and checkpoint dependence of RAD51-dependent BIR when the DSB is created within a chromosome. Gene conversion products appear within 2 h, and there is little, if any, induction of the DNA damage checkpoint; however, RAD51-dependent BIR occurs with a further delay of 2 to 4 h and cells arrest in response to the G(2)/M DNA damage checkpoint. RAD51-dependent BIR does not require special facilitating sequences that are required for a less efficient RAD51-independent process. RAD51-dependent BIR occurs efficiently in G(2)-arrested cells. Once repair is initiated, the rate of repair replication during BIR is comparable to that of normal DNA replication, as copying of >100 kb is completed less than 30 min after repair DNA synthesis is detected close to the DSB.

摘要

在一条同源染色体上发生双链断裂(DSB)的二倍体酿酒酵母细胞,超过98%的情况下会通过RAD51介导的基因转换来修复断裂。然而,当广泛的同源序列局限于DSB的一侧时,修复可通过依赖RAD51和不依赖RAD51的断裂诱导复制(BIR)机制发生。在此,我们描述了在染色体内部产生DSB时,依赖RAD51的BIR的动力学和对检查点的依赖性。基因转换产物在2小时内出现,并且几乎没有(如果有的话)DNA损伤检查点的诱导;然而,依赖RAD51的BIR会进一步延迟2至4小时出现,并且细胞会因G(2)/M期DNA损伤检查点而停滞。依赖RAD51的BIR不需要效率较低的不依赖RAD51过程所需的特殊促进序列。依赖RAD51的BIR在G(2)期停滞的细胞中有效发生。一旦修复开始,BIR期间的修复复制速率与正常DNA复制速率相当,因为在检测到靠近DSB处有修复DNA合成后不到30分钟,超过100 kb的复制就完成了。

相似文献

5
RAD51-dependent break-induced replication in yeast.
Mol Cell Biol. 2004 Mar;24(6):2344-51. doi: 10.1128/MCB.24.6.2344-2351.2004.
6
Double-strand break repair in the absence of RAD51 in yeast: a possible role for break-induced DNA replication.
Proc Natl Acad Sci U S A. 1996 Jul 9;93(14):7131-6. doi: 10.1073/pnas.93.14.7131.
8
In vivo assembly and disassembly of Rad51 and Rad52 complexes during double-strand break repair.
EMBO J. 2004 Feb 25;23(4):939-49. doi: 10.1038/sj.emboj.7600091. Epub 2004 Feb 5.
10
Break-induced replication and telomerase-independent telomere maintenance require Pol32.
Nature. 2007 Aug 16;448(7155):820-3. doi: 10.1038/nature06047. Epub 2007 Aug 1.

引用本文的文献

1
Mechanisms and genomic implications of break-induced replication.
Nat Struct Mol Biol. 2025 Aug 22. doi: 10.1038/s41594-025-01644-z.
3
Investigation of the Effects of 2.45 GHz Near-Field EMF on Yeast.
Antioxidants (Basel). 2025 Jul 3;14(7):820. doi: 10.3390/antiox14070820.
4
POLD3 as Controller of Replicative DNA Repair.
Int J Mol Sci. 2024 Nov 19;25(22):12417. doi: 10.3390/ijms252212417.
5
53BP1 deficiency leads to hyperrecombination using break-induced replication (BIR).
Nat Commun. 2024 Oct 5;15(1):8648. doi: 10.1038/s41467-024-52916-z.
6
Molecular mechanisms of avian immunoglobulin gene diversification and prospect for industrial applications.
Front Immunol. 2024 Sep 13;15:1453833. doi: 10.3389/fimmu.2024.1453833. eCollection 2024.
7
53BP1 deficiency leads to hyperrecombination using break-induced replication (BIR).
bioRxiv. 2024 Sep 13:2024.09.11.612483. doi: 10.1101/2024.09.11.612483.
8
Microsatellite break-induced replication generates highly mutagenized extrachromosomal circular DNAs.
NAR Cancer. 2024 Jun 8;6(2):zcae027. doi: 10.1093/narcan/zcae027. eCollection 2024 Jun.
9
Concurrent D-loop cleavage by Mus81 and Yen1 yields half-crossover precursors.
Nucleic Acids Res. 2024 Jul 8;52(12):7012-7030. doi: 10.1093/nar/gkae453.
10
Alternative Lengthening of Telomeres in Yeast: Old Questions and New Approaches.
Biomolecules. 2024 Jan 16;14(1):113. doi: 10.3390/biom14010113.

本文引用的文献

2
RAD51-dependent break-induced replication in yeast.
Mol Cell Biol. 2004 Mar;24(6):2344-51. doi: 10.1128/MCB.24.6.2344-2351.2004.
3
Srs2 and Sgs1-Top3 suppress crossovers during double-strand break repair in yeast.
Cell. 2003 Nov 14;115(4):401-11. doi: 10.1016/s0092-8674(03)00886-9.
4
In vivo roles of Rad52, Rad54, and Rad55 proteins in Rad51-mediated recombination.
Mol Cell. 2003 Jul;12(1):209-19. doi: 10.1016/s1097-2765(03)00269-7.
5
Connecting replication and recombination.
Mol Cell. 2003 Mar;11(3):554-6. doi: 10.1016/s1097-2765(03)00110-2.
6
Role of the Saccharomyces cerevisiae Rad9 protein in sensing and responding to DNA damage.
Biochem Soc Trans. 2003 Feb;31(Pt 1):242-6. doi: 10.1042/bst0310242.
7
Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair.
Microbiol Mol Biol Rev. 2002 Dec;66(4):630-70, table of contents. doi: 10.1128/MMBR.66.4.630-670.2002.
9
Recovery from checkpoint-mediated arrest after repair of a double-strand break requires Srs2 helicase.
Mol Cell. 2002 Aug;10(2):373-85. doi: 10.1016/s1097-2765(02)00593-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验