Suppr超能文献

转录共激活因子PC4/Sub1在RNA聚合酶II转录过程中具有多种功能。

The transcriptional coactivator PC4/Sub1 has multiple functions in RNA polymerase II transcription.

作者信息

Calvo Olga, Manley James L

机构信息

Department of Biological Sciences, Columbia University, New York, NY 10027, USA.

出版信息

EMBO J. 2005 Mar 9;24(5):1009-20. doi: 10.1038/sj.emboj.7600575. Epub 2005 Feb 3.

Abstract

Transcription and processing of mRNA precursors are coordinated events that require numerous complex interactions to ensure that they are successfully executed. We described previously an unexpected association between a transcription factor, PC4 (or Sub1 in yeast), and an mRNA polyadenylation factor, CstF-64 (Rna15 in yeast), and provided evidence that this was important for efficient transcription elongation. Here we provide insight into the mechanism by which this occurs. We show that Sub1 and Rna15 are recruited to promoters and present along the length of several yeast genes. Allele-specific genetic interactions between SUB1 and genes encoding an RNA polymerase II (RNAP II)-specific kinase (KIN28) and phosphatase (FCP1) suggest that Sub1 influences and/or is sensitive to the phosphorylation status of elongating RNAP II. Remarkably, we find that cells lacking Sub1 display decreased accumulation of Fcp1, altered RNAP II phosphorylation and decreased crosslinking of RNAP II to transcribed genes. Our data provide evidence that Rna15 and Sub1 are present along the length of several genes and that Sub1 facilitates elongation by influencing enzymes that modify RNAP II.

摘要

mRNA前体的转录和加工是相互协调的过程,需要众多复杂的相互作用以确保它们能成功进行。我们之前描述了一种转录因子PC4(酵母中的Sub1)与一种mRNA聚腺苷酸化因子CstF - 64(酵母中的Rna15)之间意外的关联,并提供证据表明这对高效转录延伸很重要。在此我们深入探讨了其发生机制。我们发现Sub1和Rna15被招募到启动子区域,并存在于多个酵母基因的全长范围内。SUB1与编码RNA聚合酶II(RNAP II)特异性激酶(KIN28)和磷酸酶(FCP1)的基因之间的等位基因特异性遗传相互作用表明,Sub1影响延伸中的RNAP II的磷酸化状态和/或对其敏感。值得注意的是,我们发现缺乏Sub1的细胞中Fcp1的积累减少,RNAP II磷酸化改变,且RNAP II与转录基因的交联减少。我们的数据提供了证据,表明Rna15和Sub1存在于多个基因的全长范围内且Sub1通过影响修饰RNAP II的酶来促进转录延伸。

相似文献

1
The transcriptional coactivator PC4/Sub1 has multiple functions in RNA polymerase II transcription.
EMBO J. 2005 Mar 9;24(5):1009-20. doi: 10.1038/sj.emboj.7600575. Epub 2005 Feb 3.
2
Sub1 globally regulates RNA polymerase II C-terminal domain phosphorylation.
Mol Cell Biol. 2010 Nov;30(21):5180-93. doi: 10.1128/MCB.00819-10. Epub 2010 Sep 7.
3
Sfl1 functions via the co-repressor Ssn6-Tup1 and the cAMP-dependent protein kinase Tpk2.
J Mol Biol. 2001 Jun 22;309(5):1007-15. doi: 10.1006/jmbi.2001.4742.
4
Regulation of elongating RNA polymerase II by forkhead transcription factors in yeast.
Science. 2003 Apr 18;300(5618):492-5. doi: 10.1126/science.1081379.
6
Sub1 contacts the RNA polymerase II stalk to modulate mRNA synthesis.
Nucleic Acids Res. 2017 Mar 17;45(5):2458-2471. doi: 10.1093/nar/gkw1206.
7
Sub1 associates with Spt5 and influences RNA polymerase II transcription elongation rate.
Mol Biol Cell. 2012 Nov;23(21):4297-312. doi: 10.1091/mbc.E12-04-0331. Epub 2012 Sep 12.
8
Transcriptional repression of the IMD2 gene mediated by the transcriptional co-activator Sub1.
Genes Cells. 2008 Nov;13(11):1113-26. doi: 10.1111/j.1365-2443.2008.01229.x. Epub 2008 Sep 23.
9
Sub1/PC4, a multifaceted factor: from transcription to genome stability.
Curr Genet. 2017 Dec;63(6):1023-1035. doi: 10.1007/s00294-017-0715-6. Epub 2017 May 31.
10
Simultaneous recruitment of coactivators by Gcn4p stimulates multiple steps of transcription in vivo.
Mol Cell Biol. 2005 Jul;25(13):5626-38. doi: 10.1128/MCB.25.13.5626-5638.2005.

引用本文的文献

2
RNA-binding proteins that lack canonical RNA-binding domains are rarely sequence-specific.
Sci Rep. 2023 Mar 31;13(1):5238. doi: 10.1038/s41598-023-32245-9.
5
Context-specific regulation and function of mRNA alternative polyadenylation.
Nat Rev Mol Cell Biol. 2022 Dec;23(12):779-796. doi: 10.1038/s41580-022-00507-5. Epub 2022 Jul 7.
6
Enhancers regulate 3' end processing activity to control expression of alternative 3'UTR isoforms.
Nat Commun. 2022 May 17;13(1):2709. doi: 10.1038/s41467-022-30525-y.
7
Positive Cofactor 4 as a Potential Radiation Biodosimeter for Early Assessment.
Dose Response. 2022 Feb 23;20(1):15593258221081317. doi: 10.1177/15593258221081317. eCollection 2022 Jan-Mar.
8
Genome-Wide Association Study Reveals as the Candidate Gene for Thermal Tolerance in Bay Scallop ().
Front Genet. 2021 Jul 19;12:650045. doi: 10.3389/fgene.2021.650045. eCollection 2021.
10
PC4 serves as a negative regulator of skin wound healing in mice.
Burns Trauma. 2020 May 5;8:tkaa010. doi: 10.1093/burnst/tkaa010. eCollection 2020.

本文引用的文献

1
Recognition of RNA polymerase II carboxy-terminal domain by 3'-RNA-processing factors.
Nature. 2004 Jul 8;430(6996):223-6. doi: 10.1038/nature02679.
2
The single-strand DNA binding activity of human PC4 prevents mutagenesis and killing by oxidative DNA damage.
Mol Cell Biol. 2004 Jul;24(13):6084-93. doi: 10.1128/MCB.24.13.6084-6093.2004.
3
New perspectives on connecting messenger RNA 3' end formation to transcription.
Curr Opin Cell Biol. 2004 Jun;16(3):272-8. doi: 10.1016/j.ceb.2004.03.007.
4
Ssu72 Is an RNA polymerase II CTD phosphatase.
Mol Cell. 2004 May 7;14(3):387-94. doi: 10.1016/s1097-2765(04)00235-7.
5
The link between mRNA processing and transcription: communication works both ways.
Exp Cell Res. 2004 May 15;296(1):91-7. doi: 10.1016/j.yexcr.2004.03.019.
6
C-terminal repeat domain kinase I phosphorylates Ser2 and Ser5 of RNA polymerase II C-terminal domain repeats.
J Biol Chem. 2004 Jun 11;279(24):24957-64. doi: 10.1074/jbc.M402218200. Epub 2004 Mar 26.
7
Transitions in RNA polymerase II elongation complexes at the 3' ends of genes.
EMBO J. 2004 Jan 28;23(2):354-64. doi: 10.1038/sj.emboj.7600053. Epub 2004 Jan 22.
9
Coordination of transcription, RNA processing, and surveillance by P-TEFb kinase on heat shock genes.
Mol Cell. 2004 Jan 16;13(1):55-65. doi: 10.1016/s1097-2765(03)00526-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验