Suppr超能文献

KvAP 电压依赖性钾离子通道的结构及其对脂质膜的依赖性。

Structure of the KvAP voltage-dependent K+ channel and its dependence on the lipid membrane.

作者信息

Lee Seok-Yong, Lee Alice, Chen Jiayun, MacKinnon Roderick

机构信息

Howard Hughes Medical Institute, Laboratory of Molecular Neurobiology and Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA.

出版信息

Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15441-6. doi: 10.1073/pnas.0507651102. Epub 2005 Oct 13.

Abstract

Voltage-dependent ion channels gate open in response to changes in cell membrane voltage. This form of gating permits the propagation of action potentials. We present two structures of the voltage-dependent K(+) channel KvAP, in complex with monoclonal Fv fragments (3.9 A) and without antibody fragments (8 A). We also studied KvAP with disulfide cross-bridges in lipid membranes. Analyzing these data in the context of the crystal structure of Kv1.2 and EPR data on KvAP we reach the following conclusions: (i) KvAP is similar in structure to Kv1.2 with a very modest difference in the orientation of its voltage sensor; (ii) mAb fragments are not the source of non-native conformations of KvAP in crystal structures; (iii) because KvAP contains separate loosely adherent domains, a lipid membrane is required to maintain their correct relative orientations, and (iv) the model of KvAP is consistent with the proposal of voltage sensing through the movement of an arginine-containing helix-turn-helix element at the protein-lipid interface.

摘要

电压依赖性离子通道会响应细胞膜电压的变化而开启。这种门控形式允许动作电位的传播。我们展示了电压依赖性钾离子通道KvAP的两种结构,一种与单克隆Fv片段结合(3.9埃),另一种没有抗体片段(8埃)。我们还研究了脂质膜中带有二硫键交联的KvAP。结合Kv1.2的晶体结构数据和KvAP的电子顺磁共振数据对这些数据进行分析,我们得出以下结论:(i)KvAP在结构上与Kv1.2相似,其电压传感器的取向差异非常小;(ii)单克隆抗体片段不是晶体结构中KvAP非天然构象的来源;(iii)由于KvAP包含独立的松散附着结构域,需要脂质膜来维持它们正确的相对取向,以及(iv)KvAP模型与通过蛋白质 - 脂质界面处含精氨酸的螺旋 - 转角 - 螺旋元件的移动进行电压传感的提议一致。

相似文献

1
Structure of the KvAP voltage-dependent K+ channel and its dependence on the lipid membrane.
Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15441-6. doi: 10.1073/pnas.0507651102. Epub 2005 Oct 13.
3
Molecular dynamics simulation of Kv channel voltage sensor helix in a lipid membrane with applied electric field.
Biophys J. 2008 Aug;95(4):1729-44. doi: 10.1529/biophysj.108.130658. Epub 2008 May 16.
5
Structural dynamics of the S4 voltage-sensor helix in lipid bilayers lacking phosphate groups.
J Phys Chem B. 2011 Jul 14;115(27):8732-8. doi: 10.1021/jp2001964. Epub 2011 Jun 22.
6
Voltage sensor conformations in the open and closed states in ROSETTA structural models of K(+) channels.
Proc Natl Acad Sci U S A. 2006 May 9;103(19):7292-7. doi: 10.1073/pnas.0602350103. Epub 2006 Apr 28.
8
KvAP-based model of the pore region of shaker potassium channel is consistent with cadmium- and ligand-binding experiments.
Biophys J. 2005 Aug;89(2):1020-9. doi: 10.1529/biophysj.105.062240. Epub 2005 May 20.
9
Crystal structure of a voltage-gated K+ channel pore module in a closed state in lipid membranes.
J Biol Chem. 2012 Dec 14;287(51):43063-70. doi: 10.1074/jbc.M112.415091. Epub 2012 Oct 24.
10
Conformational heterogeneity of the voltage sensor loop of KvAP in micelles and membranes: A fluorescence approach.
Biochim Biophys Acta Biomembr. 2021 May 1;1863(5):183568. doi: 10.1016/j.bbamem.2021.183568. Epub 2021 Jan 30.

引用本文的文献

1
Enhanced Site-Specific Fluorescent Labeling of Membrane Proteins Using Native Nanodiscs.
Biomolecules. 2025 Feb 10;15(2):254. doi: 10.3390/biom15020254.
2
Cholesterol modulates the structural dynamics of the paddle motif loop of KvAP voltage sensor.
Curr Res Struct Biol. 2024 Mar 6;7:100137. doi: 10.1016/j.crstbi.2024.100137. eCollection 2024.
4
The unique structural characteristics of the Kir 7.1 inward rectifier potassium channel: a novel player in energy homeostasis control.
Am J Physiol Cell Physiol. 2023 Mar 1;324(3):C694-C706. doi: 10.1152/ajpcell.00335.2022. Epub 2023 Jan 30.
6
The 70-year search for the voltage-sensing mechanism of ion channels.
J Physiol. 2022 Jul;600(14):3227-3247. doi: 10.1113/JP282780. Epub 2022 Jul 6.
7
CNG channel structure, function, and gating: a tale of conformational flexibility.
Pflugers Arch. 2021 Sep;473(9):1423-1435. doi: 10.1007/s00424-021-02610-6. Epub 2021 Aug 6.
8
High-Resolution Structures of K Channels.
Handb Exp Pharmacol. 2021;267:51-81. doi: 10.1007/164_2021_454.
9
Structure of membrane diacylglycerol kinase in lipid bilayers.
Commun Biol. 2021 Mar 5;4(1):282. doi: 10.1038/s42003-021-01802-1.
10
Non-linear Conductance, Rectification, and Mechanosensitive Channel Formation of Lipid Membranes.
Front Cell Dev Biol. 2021 Jan 26;8:592520. doi: 10.3389/fcell.2020.592520. eCollection 2020.

本文引用的文献

2
Crystal structure of a mammalian voltage-dependent Shaker family K+ channel.
Science. 2005 Aug 5;309(5736):897-903. doi: 10.1126/science.1116269. Epub 2005 Jul 7.
3
Voltage sensor of Kv1.2: structural basis of electromechanical coupling.
Science. 2005 Aug 5;309(5736):903-8. doi: 10.1126/science.1116270. Epub 2005 Jul 7.
4
Phosphoinositide phosphatase activity coupled to an intrinsic voltage sensor.
Nature. 2005 Jun 30;435(7046):1239-43. doi: 10.1038/nature03650. Epub 2005 May 18.
5
Recognition of transmembrane helices by the endoplasmic reticulum translocon.
Nature. 2005 Jan 27;433(7024):377-81. doi: 10.1038/nature03216.
6
Molecular mechanism of voltage sensor movements in a potassium channel.
EMBO J. 2004 Dec 8;23(24):4717-26. doi: 10.1038/sj.emboj.7600484. Epub 2004 Nov 25.
7
Molecular architecture of the KvAP voltage-dependent K+ channel in a lipid bilayer.
Science. 2004 Oct 15;306(5695):491-5. doi: 10.1126/science.1101373.
8
The orientation and molecular movement of a k(+) channel voltage-sensing domain.
Neuron. 2003 Oct 30;40(3):515-25. doi: 10.1016/s0896-6273(03)00646-9.
9
Molecular movement of the voltage sensor in a K channel.
J Gen Physiol. 2003 Dec;122(6):741-8. doi: 10.1085/jgp.200308927. Epub 2003 Nov 10.
10
Atomic proximity between S4 segment and pore domain in Shaker potassium channels.
Neuron. 2003 Jul 31;39(3):467-81. doi: 10.1016/s0896-6273(03)00468-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验