Suppr超能文献

大肠杆菌16S rRNA中对核糖体亚基结合至关重要的核苷酸的鉴定。

Identification of nucleotides in E. coli 16S rRNA essential for ribosome subunit association.

作者信息

Pulk Arto, Maiväli Ulo, Remme Jaanus

机构信息

Institute of Molecular and Cell Biology, Tartu University, Riia, Estonia.

出版信息

RNA. 2006 May;12(5):790-6. doi: 10.1261/rna.2275906. Epub 2006 Mar 23.

Abstract

The ribosome consists of two unequal subunits, which associate via numerous intersubunit contacts. Medium-resolution structural studies have led to grouping of the intersubunit contacts into 12 directly visualizable intersubunit bridges. Most of the intersubunit interactions involve RNA. We have used an RNA modification interference approach to determine Escherichia coli 16S rRNA positions that are essential for the association of functionally active 70S ribosomes. Modification of the N1 position of A702, A1418, and A1483 with DMS, and of the N3 position of U793, U1414, and U1495 with CMCT in 30S subunits strongly interferes with 70S ribosome formation. Five of these positions localize into previously recognized intersubunit bridges, namely, B2a (U1495), B2b (U793), B3 (A1483), B5 (A1418), and B7a (A702). The remaining position displaying interference, U1414, forms a base pair with G1486, which is a part of bridge B3. We contend that these five intersubunit bridges are essential for reassociation of the 70S ribosome, thus forming the functional core of the intersubunit contacts.

摘要

核糖体由两个大小不等的亚基组成,它们通过众多亚基间的接触相互结合。中等分辨率的结构研究已将亚基间的接触分为12个可直接观察到的亚基间桥。大多数亚基间相互作用涉及RNA。我们采用RNA修饰干扰方法来确定对功能性活性70S核糖体结合至关重要的大肠杆菌16S rRNA位置。在30S亚基中,用硫酸二甲酯(DMS)修饰A702、A1418和A1483的N1位置,以及用N-环己基-N'-(2-吗啉代乙基)碳二亚胺甲对甲苯磺酸盐(CMCT)修饰U793、U1414和U1495的N3位置,会强烈干扰70S核糖体的形成。这些位置中的五个定位于先前识别的亚基间桥,即B2a(U1495)、B2b(U793)、B3(A1483)、B5(A1418)和B7a(A702)。显示干扰的其余位置U1414与G1486形成碱基对,G1486是桥B3的一部分。我们认为这五个亚基间桥对于70S核糖体的重新结合至关重要,从而形成亚基间接触的功能核心。

相似文献

1
Identification of nucleotides in E. coli 16S rRNA essential for ribosome subunit association.
RNA. 2006 May;12(5):790-6. doi: 10.1261/rna.2275906. Epub 2006 Mar 23.
3
Ribosomal intersubunit bridge B2a is involved in factor-dependent translation initiation and translational processivity.
J Mol Biol. 2009 Jan 16;385(2):405-22. doi: 10.1016/j.jmb.2008.10.065. Epub 2008 Nov 5.
5
Interaction of translation initiation factor IF1 with the E. coli ribosomal A site.
J Mol Biol. 2000 May 26;299(1):1-15. doi: 10.1006/jmbi.2000.3672.
10
A time-resolved investigation of ribosomal subunit association.
J Mol Biol. 2005 Mar 11;346(5):1243-58. doi: 10.1016/j.jmb.2004.12.054. Epub 2005 Jan 16.

引用本文的文献

1
Three-dimensional structure-guided evolution of a ribosome with tethered subunits.
Nat Chem Biol. 2022 Sep;18(9):990-998. doi: 10.1038/s41589-022-01064-w. Epub 2022 Jul 14.
2
Hibernation factors directly block ribonucleases from entering the ribosome in response to starvation.
Nucleic Acids Res. 2021 Feb 26;49(4):2226-2239. doi: 10.1093/nar/gkab017.
3
Exploring allosteric communication in multiple states of the bacterial ribosome using residue network analysis.
Turk J Biol. 2018 Oct 25;42(5):392-404. doi: 10.3906/biy-1802-77. eCollection 2018.
4
Intersubunit Bridges of the Bacterial Ribosome.
J Mol Biol. 2016 May 22;428(10 Pt B):2146-64. doi: 10.1016/j.jmb.2016.02.009. Epub 2016 Feb 13.
5
Dynamic contact network between ribosomal subunits enables rapid large-scale rotation during spontaneous translocation.
Nucleic Acids Res. 2015 Aug 18;43(14):6747-60. doi: 10.1093/nar/gkv649. Epub 2015 Jun 24.
8
Real-time evidence for EF-G-induced dynamics of helix 44 in 16S rRNA.
J Mol Biol. 2012 Sep 7;422(1):45-57. doi: 10.1016/j.jmb.2012.05.012. Epub 2012 May 23.
9
Ribosomal history reveals origins of modern protein synthesis.
PLoS One. 2012;7(3):e32776. doi: 10.1371/journal.pone.0032776. Epub 2012 Mar 12.
10
Mutations in the intersubunit bridge regions of 16S rRNA affect decoding and subunit-subunit interactions on the 70S ribosome.
Nucleic Acids Res. 2011 Apr;39(8):3321-30. doi: 10.1093/nar/gkq1253. Epub 2010 Dec 7.

本文引用的文献

1
Structures of the bacterial ribosome at 3.5 A resolution.
Science. 2005 Nov 4;310(5749):827-34. doi: 10.1126/science.1117230.
2
Analysis of the function of E. coli 23S rRNA helix-loop 69 by mutagenesis.
BMC Mol Biol. 2005 Jul 29;6:18. doi: 10.1186/1471-2199-6-18.
4
Mechanism for the disassembly of the posttermination complex inferred from cryo-EM studies.
Mol Cell. 2005 Jun 10;18(6):663-74. doi: 10.1016/j.molcel.2005.05.005.
6
A time-resolved investigation of ribosomal subunit association.
J Mol Biol. 2005 Mar 11;346(5):1243-58. doi: 10.1016/j.jmb.2004.12.054. Epub 2005 Jan 16.
7
X-ray crystallography study on ribosome recycling: the mechanism of binding and action of RRF on the 50S ribosomal subunit.
EMBO J. 2005 Jan 26;24(2):251-60. doi: 10.1038/sj.emboj.7600525. Epub 2004 Dec 23.
9
Definition of bases in 23S rRNA essential for ribosomal subunit association.
RNA. 2004 Apr;10(4):600-4. doi: 10.1261/rna.5220504.
10
Domain movements of elongation factor eEF2 and the eukaryotic 80S ribosome facilitate tRNA translocation.
EMBO J. 2004 Mar 10;23(5):1008-19. doi: 10.1038/sj.emboj.7600102. Epub 2004 Feb 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验