Suppr超能文献

16S核糖体RNA中对30S亚基组装以及与50S核糖体亚基结合很重要的非桥连磷酸氧。

Nonbridging phosphate oxygens in 16S rRNA important for 30S subunit assembly and association with the 50S ribosomal subunit.

作者信息

Ghosh Srikanta, Joseph Simpson

机构信息

4102 Urey Hall, Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0314, USA.

出版信息

RNA. 2005 May;11(5):657-67. doi: 10.1261/rna.7224305. Epub 2005 Apr 5.

Abstract

Ribosomes are composed of RNA and protein molecules that associate together to form a supramolecular machine responsible for protein biosynthesis. Detailed information about the structure of the ribosome has come from the recent X-ray crystal structures of the ribosome and the ribosomal subunits. However, the molecular interactions between the rRNAs and the r-proteins that occur during the intermediate steps of ribosome assembly are poorly understood. Here we describe a modification-interference approach to identify nonbridging phosphate oxygens within 16S rRNA that are important for the in vitro assembly of the Escherichia coli 30S small ribosomal subunit and for its association with the 50S large ribosomal subunit. The 30S small subunit was reconstituted from phosphorothioate-substituted 16S rRNA and small subunit proteins. Active 30S subunits were selected by their ability to bind to the 50S large subunit and form 70S ribosomes. Analysis of the selected population shows that phosphate oxygens at specific positions in the 16S rRNA are important for either subunit assembly or for binding to the 50S subunit. The X-ray crystallographic structures of the 30S subunit suggest that some of these phosphate oxygens participate in r-protein binding, coordination of metal ions, or for the formation of intersubunit bridges in the mature 30S subunit. Interestingly, however, several of the phosphate oxygens identified in this study do not participate in any interaction in the mature 30S subunit, suggesting that they play a role in the early steps of the 30S subunit assembly.

摘要

核糖体由RNA和蛋白质分子组成,它们结合在一起形成一个负责蛋白质生物合成的超分子机器。关于核糖体结构的详细信息来自最近核糖体及其亚基的X射线晶体结构。然而,在核糖体组装的中间步骤中,rRNA和r蛋白之间的分子相互作用却知之甚少。在此,我们描述了一种修饰干扰方法,以鉴定16S rRNA中对大肠杆菌30S小核糖体亚基的体外组装及其与50S大核糖体亚基的结合很重要的非桥连磷酸氧。30S小亚基由硫代磷酸取代的16S rRNA和小亚基蛋白重构而成。通过其与50S大亚基结合并形成70S核糖体的能力来选择有活性的30S亚基。对所选群体的分析表明,16S rRNA中特定位置的磷酸氧对亚基组装或与50S亚基的结合很重要。30S亚基的X射线晶体结构表明,其中一些磷酸氧参与r蛋白结合、金属离子配位或在成熟30S亚基中形成亚基间桥。然而,有趣的是,本研究中鉴定出的几个磷酸氧在成熟30S亚基中不参与任何相互作用,这表明它们在30S亚基组装的早期步骤中起作用。

相似文献

3
Analysis of conformational changes in 16 S rRNA during the course of 30 S subunit assembly.
J Mol Biol. 2005 Nov 25;354(2):340-57. doi: 10.1016/j.jmb.2005.09.056. Epub 2005 Oct 5.
4
Identification of nucleotides in E. coli 16S rRNA essential for ribosome subunit association.
RNA. 2006 May;12(5):790-6. doi: 10.1261/rna.2275906. Epub 2006 Mar 23.
7
The 30S ribosomal P site: a function of 16S rRNA.
FEBS Lett. 2005 Feb 7;579(4):855-8. doi: 10.1016/j.febslet.2004.11.026.
8
Assembly of the 30S ribosomal subunit: positioning ribosomal protein S13 in the S7 assembly branch.
RNA. 2004 Dec;10(12):1861-6. doi: 10.1261/rna.7130504. Epub 2004 Nov 3.
9
Differential assembly of 16S rRNA domains during 30S subunit formation.
RNA. 2010 Oct;16(10):1990-2001. doi: 10.1261/rna.2246710. Epub 2010 Aug 24.
10
Assembly of the 5' and 3' minor domains of 16S ribosomal RNA as monitored by tethered probing from ribosomal protein S20.
J Mol Biol. 2008 Feb 8;376(1):92-108. doi: 10.1016/j.jmb.2007.10.083. Epub 2007 Nov 6.

引用本文的文献

1
Mechanistic insights into the alternative ribosome recycling by HflXr.
Nucleic Acids Res. 2024 Apr 24;52(7):4053-4066. doi: 10.1093/nar/gkae128.
2
Intersubunit Bridges of the Bacterial Ribosome.
J Mol Biol. 2016 May 22;428(10 Pt B):2146-64. doi: 10.1016/j.jmb.2016.02.009. Epub 2016 Feb 13.
6
rRNA mutations that inhibit transfer-messenger RNA activity on stalled ribosomes.
J Bacteriol. 2010 Jan;192(2):553-9. doi: 10.1128/JB.01178-09. Epub 2009 Nov 6.
7
rRNA mutants in the yeast peptidyltransferase center reveal allosteric information networks and mechanisms of drug resistance.
Nucleic Acids Res. 2008 Mar;36(5):1497-507. doi: 10.1093/nar/gkm1179. Epub 2008 Jan 18.
8
Intragenomic diversity of the V1 regions of 16S rRNA genes in high-alkaline protease-producing Bacillus clausii spp.
Extremophiles. 2007 Jul;11(4):597-603. doi: 10.1007/s00792-007-0074-1. Epub 2007 Apr 12.
10
Identification of nucleotides in E. coli 16S rRNA essential for ribosome subunit association.
RNA. 2006 May;12(5):790-6. doi: 10.1261/rna.2275906. Epub 2006 Mar 23.

本文引用的文献

1
Definition of bases in 23S rRNA essential for ribosomal subunit association.
RNA. 2004 Apr;10(4):600-4. doi: 10.1261/rna.5220504.
2
Mapping structural differences between 30S ribosomal subunit assembly intermediates.
Nat Struct Mol Biol. 2004 Feb;11(2):179-86. doi: 10.1038/nsmb719. Epub 2004 Jan 11.
4
DnaK-facilitated ribosome assembly in Escherichia coli revisited.
RNA. 2003 Jul;9(7):787-93. doi: 10.1261/rna.5360203.
5
Study of the structural dynamics of the E coli 70S ribosome using real-space refinement.
Cell. 2003 Jun 13;113(6):789-801. doi: 10.1016/s0092-8674(03)00427-6.
6
The DEAD-box RNA helicase SrmB is involved in the assembly of 50S ribosomal subunits in Escherichia coli.
Mol Microbiol. 2003 Jun;48(5):1253-65. doi: 10.1046/j.1365-2958.2003.03513.x.
7
A structural model for the assembly of the 30S subunit of the ribosome.
J Mol Biol. 2003 Apr 18;328(1):49-61. doi: 10.1016/s0022-2836(03)00174-8.
8
After the ribosome structures: how are the subunits assembled?
RNA. 2003 Feb;9(2):165-7. doi: 10.1261/rna.2164903.
9
Accessibility of phosphates in domain I of 23 S rRNA in the ribosomal 50 S subunit as detected by R(P) phosphorothioates.
Biochim Biophys Acta. 2002 Nov 13;1579(1):1-7. doi: 10.1016/s0167-4781(02)00415-3.
10
The DnaK chaperone system facilitates 30S ribosomal subunit assembly.
Mol Cell. 2002 Jul;10(1):129-38. doi: 10.1016/s1097-2765(02)00562-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验