Suppr超能文献

来自脂肪组织的新鲜分离、培养和分化的间充质干细胞中脂肪生成启动子的稳定CpG低甲基化。

Stable CpG hypomethylation of adipogenic promoters in freshly isolated, cultured, and differentiated mesenchymal stem cells from adipose tissue.

作者信息

Noer Agate, Sørensen Anita L, Boquest Andrew C, Collas Philippe

机构信息

Department of Biochemistry, Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway.

出版信息

Mol Biol Cell. 2006 Aug;17(8):3543-56. doi: 10.1091/mbc.e06-04-0322. Epub 2006 Jun 7.

Abstract

Mesenchymal stem cells from adipose tissue can differentiate into mesodermal lineages. Differentiation potential, however, varies between clones of adipose stem cells (ASCs), raising the hypothesis that epigenetic differences account for this variability. We report here a bisulfite sequencing analysis of CpG methylation of adipogenic (leptin [LEP], peroxisome proliferator-activated receptor gamma 2 [PPARG2], fatty acid-binding protein 4 [FABP4], and lipoprotein lipase [LPL]) promoters and of nonadipogenic (myogenin [MYOG], CD31, and GAPDH) loci in freshly isolated human ASCs and in cultured ASCs, in relation to gene expression and differentiation potential. Uncultured ASCs display hypomethylated adipogenic promoters, in contrast to myogenic and endothelial loci, which are methylated. Adipogenic promoters exhibit mosaic CpG methylation, on the basis of heterogeneous methylation between cells and of variation in the extent of methylation of a given CpG between donors, and both between and within clonal cell lines. DNA methylation reflects neither transcriptional status nor potential for gene expression upon differentiation. ASC culture preserves hypomethylation of adipogenic promoters; however, between- and within-clone mosaic methylation is detected. Adipogenic differentiation also maintains the overall CpG hypomethylation of LEP, PPARG2, FABP4, and LPL despite demethylation of specific CpGs and transcriptional induction. Furthermore, enhanced methylation at adipogenic loci in primary differentiated cells unrelated to adipogenesis argues for ASC specificity of the hypomethylated state of these loci. Therefore, mosaic hypomethylation of adipogenic promoters may constitute a molecular signature of ASCs, and DNA methylation does not seem to be a determinant of differentiation potential of these cells.

摘要

脂肪组织来源的间充质干细胞可分化为中胚层谱系。然而,脂肪干细胞(ASC)克隆之间的分化潜能存在差异,这引发了一种假说,即表观遗传差异是造成这种变异性的原因。我们在此报告了对新鲜分离的人ASC以及培养的ASC中脂肪生成相关(瘦素[LEP]、过氧化物酶体增殖物激活受体γ2[PPARG2]、脂肪酸结合蛋白4[FABP4]和脂蛋白脂肪酶[LPL])启动子以及非脂肪生成相关(肌细胞生成素[MYOG]、CD31和甘油醛-3-磷酸脱氢酶[GAPDH])基因座的CpG甲基化进行的亚硫酸氢盐测序分析,以及与基因表达和分化潜能的关系。未培养的ASC显示脂肪生成相关启动子低甲基化,而肌生成和内皮基因座则是甲基化的。基于细胞间的异质性甲基化以及供体之间、克隆细胞系之间和内部给定CpG甲基化程度的变化,脂肪生成相关启动子呈现镶嵌式CpG甲基化。DNA甲基化既不反映转录状态,也不反映分化时基因表达潜能。ASC培养保留了脂肪生成相关启动子的低甲基化;然而,检测到克隆间和克隆内的镶嵌式甲基化。尽管特定CpG去甲基化并转录诱导,但脂肪生成分化仍维持LEP、PPARG2、FABP4和LPL的整体CpG低甲基化。此外,在与脂肪生成无关的原代分化细胞中,脂肪生成基因座甲基化增强,这表明这些基因座的低甲基化状态具有ASC特异性。因此,脂肪生成相关启动子的镶嵌式低甲基化可能构成ASC的分子特征,而DNA甲基化似乎不是这些细胞分化潜能的决定因素。

相似文献

5
Epigenetic programming of mesenchymal stem cells from human adipose tissue.
Stem Cell Rev. 2006;2(4):319-29. doi: 10.1007/BF02698059.
6
Lineage-specific promoter DNA methylation patterns segregate adult progenitor cell types.
Stem Cells Dev. 2010 Aug;19(8):1257-66. doi: 10.1089/scd.2009.0309.
8
Epigenetic modifications underlie the differential adipogenic potential of preadipocytes derived from human subcutaneous fat tissue.
Am J Physiol Cell Physiol. 2021 Sep 1;321(3):C596-C606. doi: 10.1152/ajpcell.00387.2020. Epub 2021 Jul 28.

引用本文的文献

1
Exploring NamiRNA networks and time-series gene expression in osteogenic differentiation of adipose-derived stem cells.
Ann Med. 2025 Dec;57(1):2478323. doi: 10.1080/07853890.2025.2478323. Epub 2025 Mar 18.
2
Placenta DNA methylation levels of the promoter region of the leptin receptor gene are associated with infant cortisol.
Psychoneuroendocrinology. 2023 Jul;153:106119. doi: 10.1016/j.psyneuen.2023.106119. Epub 2023 Apr 20.
6
Higher Expression of DNA (de)methylation-Related Genes Reduces Adipogenicity in Dental Pulp Stem Cells.
Front Cell Dev Biol. 2022 Feb 24;10:791667. doi: 10.3389/fcell.2022.791667. eCollection 2022.
9
Concurrent EPA and DHA Supplementation Impairs Brown Adipogenesis of C2C12 Cells.
Front Genet. 2020 Jun 12;11:531. doi: 10.3389/fgene.2020.00531. eCollection 2020.
10

本文引用的文献

1
Chromatin signatures of pluripotent cell lines.
Nat Cell Biol. 2006 May;8(5):532-8. doi: 10.1038/ncb1403. Epub 2006 Mar 29.
2
p21Waf1/Cip1 plays a critical role in modulating senescence through changes of DNA methylation.
J Cell Biochem. 2006 Aug 1;98(5):1230-48. doi: 10.1002/jcb.20838.
3
Fat tissue: an underappreciated source of stem cells for biotechnology.
Trends Biotechnol. 2006 Apr;24(4):150-4. doi: 10.1016/j.tibtech.2006.01.010. Epub 2006 Feb 20.
4
Human adipose tissue-derived mesenchymal stem cells differentiate into insulin, somatostatin, and glucagon expressing cells.
Biochem Biophys Res Commun. 2006 Mar 24;341(4):1135-40. doi: 10.1016/j.bbrc.2006.01.072. Epub 2006 Jan 26.
5
Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue.
Stem Cells. 2006 May;24(5):1294-301. doi: 10.1634/stemcells.2005-0342. Epub 2006 Jan 12.
6
Primitive human hematopoietic cells give rise to differentially specified daughter cells upon their initial cell division.
Blood. 2006 Mar 1;107(5):2146-52. doi: 10.1182/blood-2005-08-3139. Epub 2005 Oct 25.
7
Global hypomethylation of the genome in XX embryonic stem cells.
Nat Genet. 2005 Nov;37(11):1274-9. doi: 10.1038/ng1663. Epub 2005 Oct 23.
8
Dynamic and reversibility of heterochromatic gene silencing in human disease.
Cell Res. 2005 Sep;15(9):679-90. doi: 10.1038/sj.cr.7290337.
9
Stem cells, asymmetric division and cancer.
Nat Genet. 2005 Oct;37(10):1027-8. doi: 10.1038/ng1005-1027.
10
Genomic alterations in cultured human embryonic stem cells.
Nat Genet. 2005 Oct;37(10):1099-103. doi: 10.1038/ng1631. Epub 2005 Sep 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验