Suppr超能文献

使用生物正交非天然氨基酸标记(BONCAT)对哺乳动物细胞中新合成的蛋白质进行选择性鉴定。

Selective identification of newly synthesized proteins in mammalian cells using bioorthogonal noncanonical amino acid tagging (BONCAT).

作者信息

Dieterich Daniela C, Link A James, Graumann Johannes, Tirrell David A, Schuman Erin M

机构信息

Division of Biology, Howard Hughes Medical Institute, Pasadena, CA 91125, USA.

出版信息

Proc Natl Acad Sci U S A. 2006 Jun 20;103(25):9482-7. doi: 10.1073/pnas.0601637103. Epub 2006 Jun 12.

Abstract

In both normal and pathological states, cells respond rapidly to environmental cues by synthesizing new proteins. The selective identification of a newly synthesized proteome has been hindered by the basic fact that all proteins, new and old, share the same pool of amino acids and thus are chemically indistinguishable. We describe here a technology, based on the cotranslational introduction of azide groups into proteins and the chemoselective tagging of azide-labeled proteins with an alkyne affinity tag, to separate and identify, specifically, the newly synthesized proteins in mammalian cells. Incorporation of the azide-bearing amino acid azidohomoalanine is unbiased, not toxic, and does not increase protein degradation. As a first demonstration of the method, we report the selective purification and identification of 195 metabolically labeled proteins with multidimensional liquid chromatography in-line with tandem MS. Furthermore, in combination with leucine-based mass tagging, candidates were immediately validated as newly synthesized proteins. The identified proteins, synthesized in a 2-h window, possess a broad range of biochemical properties and span most functional gene ontology categories. This technology makes it possible to address the temporal and spatial characteristics of newly synthesized proteomes in any cell type.

摘要

在正常和病理状态下,细胞都会通过合成新蛋白质来快速响应环境信号。新合成蛋白质组的选择性鉴定一直受到一个基本事实的阻碍,即所有蛋白质,无论新旧,都共享同一氨基酸库,因此在化学上无法区分。我们在此描述一种技术,该技术基于在蛋白质中进行共翻译引入叠氮基团,并利用炔烃亲和标签对叠氮标记的蛋白质进行化学选择性标记,以特异性地分离和鉴定哺乳动物细胞中新合成的蛋白质。含叠氮氨基酸叠氮高丙氨酸的掺入是无偏差的,无毒的,并且不会增加蛋白质降解。作为该方法的首次证明,我们报告了通过多维液相色谱与串联质谱联用对195种代谢标记蛋白质进行选择性纯化和鉴定。此外,结合基于亮氨酸的质量标记,候选蛋白质可立即被验证为新合成的蛋白质。在2小时内合成的已鉴定蛋白质具有广泛的生化特性,涵盖了大多数功能基因本体类别。这项技术使得研究任何细胞类型中新合成蛋白质组的时空特征成为可能。

相似文献

1
Selective identification of newly synthesized proteins in mammalian cells using bioorthogonal noncanonical amino acid tagging (BONCAT).
Proc Natl Acad Sci U S A. 2006 Jun 20;103(25):9482-7. doi: 10.1073/pnas.0601637103. Epub 2006 Jun 12.
5
Noncanonical amino acids in the interrogation of cellular protein synthesis.
Acc Chem Res. 2011 Sep 20;44(9):677-85. doi: 10.1021/ar200144y. Epub 2011 Aug 4.
8
BONCAT: metabolic labeling, click chemistry, and affinity purification of newly synthesized proteomes.
Methods Mol Biol. 2015;1266:199-215. doi: 10.1007/978-1-4939-2272-7_14.
9
Teaching old NCATs new tricks: using non-canonical amino acid tagging to study neuronal plasticity.
Curr Opin Chem Biol. 2013 Oct;17(5):738-46. doi: 10.1016/j.cbpa.2013.07.021. Epub 2013 Aug 9.
10
Light-Activated Proteomic Labeling via Photocaged Bioorthogonal Non-Canonical Amino Acids.
ACS Chem Biol. 2018 Mar 16;13(3):573-577. doi: 10.1021/acschembio.7b01023. Epub 2018 Feb 8.

引用本文的文献

2
Bioorthogonal Non-Canonical Amino Acid Tagging (BONCAT) to detect newly synthesized proteins in cells and their secretome.
PLoS One. 2025 Aug 14;20(8):e0329857. doi: 10.1371/journal.pone.0329857. eCollection 2025.
4
Mimivirus transcription and translation occur at well-defined locations within amoeba host cells.
J Virol. 2025 Jul 22;99(7):e0055425. doi: 10.1128/jvi.00554-25. Epub 2025 Jun 13.
5
Synaptic proteins that aggregate and degrade slower with aging accumulate in microglia.
bioRxiv. 2025 May 21:2025.05.20.654652. doi: 10.1101/2025.05.20.654652.
6
Albendazole specifically disrupts microtubules and protein turnover in the tegument of the cestode Mesocestoides corti.
PLoS Pathog. 2025 Jun 4;21(6):e1013221. doi: 10.1371/journal.ppat.1013221. eCollection 2025 Jun.
7
BONCAT-Live for isolation and cultivation of active environmental microbes.
bioRxiv. 2025 May 14:2025.05.14.654084. doi: 10.1101/2025.05.14.654084.
10
Dual Labeling of Newly Synthesized Proteins and Existing Proteins Using -SLENP.
Curr Protoc. 2025 May;5(5):e70146. doi: 10.1002/cpz1.70146.

本文引用的文献

1
An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database.
J Am Soc Mass Spectrom. 1994 Nov;5(11):976-89. doi: 10.1016/1044-0305(94)80016-2.
3
Global landscape of protein complexes in the yeast Saccharomyces cerevisiae.
Nature. 2006 Mar 30;440(7084):637-43. doi: 10.1038/nature04670. Epub 2006 Mar 22.
7
Chemistry in living systems.
Nat Chem Biol. 2005 Jun;1(1):13-21. doi: 10.1038/nchembio0605-13.
8
Cell surface labeling of Escherichia coli via copper(I)-catalyzed [3+2] cycloaddition.
J Am Chem Soc. 2003 Sep 17;125(37):11164-5. doi: 10.1021/ja036765z.
9
Biomarker discovery from pancreatic cancer secretome using a differential proteomic approach.
Mol Cell Proteomics. 2006 Jan;5(1):157-71. doi: 10.1074/mcp.M500178-MCP200. Epub 2005 Oct 8.
10
Processed N-termini of mature proteins in higher eukaryotes and their major contribution to dynamic proteomics.
Biochimie. 2005 Aug;87(8):701-12. doi: 10.1016/j.biochi.2005.03.011. Epub 2005 Apr 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验