Suppr超能文献

GlpD和PlsB参与大肠杆菌中持留菌的形成。

GlpD and PlsB participate in persister cell formation in Escherichia coli.

作者信息

Spoering Amy L, Vulic Marin, Lewis Kim

机构信息

Northeastern University, Department of Biology, 405 Mugar Hall, 360 Huntington Ave., Boston, MA 02115, USA.

出版信息

J Bacteriol. 2006 Jul;188(14):5136-44. doi: 10.1128/JB.00369-06.

Abstract

Bacterial populations produce dormant persister cells that are resistant to killing by all antibiotics currently in use, a phenomenon known as multidrug tolerance (MDT). Persisters are phenotypic variants of the wild type and are largely responsible for MDT of biofilms and stationary populations. We recently showed that a hipBA toxin/antitoxin locus is part of the MDT mechanism in Escherichia coli. In an effort to find additional MDT genes, an E. coli expression library was selected for increased survival to ampicillin. A clone with increased persister production was isolated and was found to overexpress the gene for the conserved aerobic sn-glycerol-3-phosphate dehydrogenase GlpD. The GlpD overexpression strain showed increased tolerance to ampicillin and ofloxacin, while a strain with glpD deleted had a decreased level of persisters in the stationary state. This suggests that GlpD is a component of the MDT mechanism. Further genetic studies of mutants affected in pathways involved in sn-glycerol-3-phosphate metabolism have led to the identification of two additional multidrug tolerance loci, glpABC, the anaerobic sn-glycerol-3-phosphate dehydrogenase, and plsB, an sn-glycerol-3-phosphate acyltransferase.

摘要

细菌群体可产生休眠的持留菌细胞,这些细胞对目前使用的所有抗生素均具有抗性,这一现象被称为多重耐药性(MDT)。持留菌是野生型的表型变体,在很大程度上导致了生物膜和静止群体的多重耐药性。我们最近发现,hipBA毒素/抗毒素基因座是大肠杆菌多重耐药机制的一部分。为了寻找其他多重耐药基因,我们选择了一个大肠杆菌表达文库,以提高其对氨苄西林的存活率。分离出一个产生更多持留菌的克隆,发现它过度表达保守的需氧sn-甘油-3-磷酸脱氢酶GlpD的基因。GlpD过表达菌株对氨苄西林和氧氟沙星的耐受性增强,而缺失glpD的菌株在静止状态下持留菌水平降低。这表明GlpD是多重耐药机制的一个组成部分。对参与sn-甘油-3-磷酸代谢途径的突变体进行的进一步遗传学研究,已鉴定出另外两个多重耐药基因座,即厌氧sn-甘油-3-磷酸脱氢酶glpABC和sn-甘油-3-磷酸酰基转移酶plsB。

相似文献

1
GlpD and PlsB participate in persister cell formation in Escherichia coli.
J Bacteriol. 2006 Jul;188(14):5136-44. doi: 10.1128/JB.00369-06.
2
Specialized persister cells and the mechanism of multidrug tolerance in Escherichia coli.
J Bacteriol. 2004 Dec;186(24):8172-80. doi: 10.1128/JB.186.24.8172-8180.2004.
3
(p)ppGpp-Dependent Persisters Increase the Fitness of Escherichia coli Bacteria Deficient in Isoaspartyl Protein Repair.
Appl Environ Microbiol. 2016 Aug 15;82(17):5444-54. doi: 10.1128/AEM.00623-16. Print 2016 Sep 1.
4
A molecular model for persister in E. coli.
J Theor Biol. 2008 Nov 21;255(2):205-9. doi: 10.1016/j.jtbi.2008.07.035. Epub 2008 Jul 31.
5
Multidrug tolerance of biofilms and persister cells.
Curr Top Microbiol Immunol. 2008;322:107-31. doi: 10.1007/978-3-540-75418-3_6.
6
Energy production genes sucB and ubiF are involved in persister survival and tolerance to multiple antibiotics and stresses in Escherichia coli.
FEMS Microbiol Lett. 2010 Feb;303(1):33-40. doi: 10.1111/j.1574-6968.2009.01857.x. Epub 2009 Nov 17.
7
Transposon mutagenesis identifies genes which control antimicrobial drug tolerance in stationary-phase Escherichia coli.
FEMS Microbiol Lett. 2005 Feb 1;243(1):117-24. doi: 10.1016/j.femsle.2004.11.049.
9
Kinase activity of overexpressed HipA is required for growth arrest and multidrug tolerance in Escherichia coli.
J Bacteriol. 2006 Dec;188(24):8360-7. doi: 10.1128/JB.01237-06. Epub 2006 Oct 13.

引用本文的文献

2
Unraveling CRP/cAMP-mediated metabolic regulation in persister cells.
Elife. 2025 Jul 8;13:RP99735. doi: 10.7554/eLife.99735.
3
Epigenetic cellular memory in generates phenotypic variation in response to host environments.
Proc Natl Acad Sci U S A. 2025 Jul 8;122(27):e2415345122. doi: 10.1073/pnas.2415345122. Epub 2025 Jul 1.
4
Drug delivery dynamics dictate evolution of bacterial antibiotic responses.
ISME J. 2025 Jan 2;19(1). doi: 10.1093/ismejo/wraf082.
5
PlsX and PlsY: Additional roles beyond glycerophospholipid synthesis in Gram-negative bacteria.
mBio. 2024 Dec 11;15(12):e0296924. doi: 10.1128/mbio.02969-24. Epub 2024 Oct 30.
6
Bacterial persisters: molecular mechanisms and therapeutic development.
Signal Transduct Target Ther. 2024 Jul 17;9(1):174. doi: 10.1038/s41392-024-01866-5.
7
UNRAVELING CRP/cAMP-MEDIATED METABOLIC REGULATION IN PERSISTER CELLS.
bioRxiv. 2024 Jun 10:2024.06.10.598332. doi: 10.1101/2024.06.10.598332.
8
IS-mediated chromosomal amplification of the operon leads to polymyxin B resistance in B strains.
mBio. 2024 Jul 17;15(7):e0063424. doi: 10.1128/mbio.00634-24. Epub 2024 Jun 21.
9
Laboratory Evolution of Antimicrobial Resistance in Bacteria to Develop Rational Treatment Strategies.
Antibiotics (Basel). 2024 Jan 18;13(1):94. doi: 10.3390/antibiotics13010094.
10
Dynamics of drug delivery determines course of evolution of antibiotic responses in bacteria.
bioRxiv. 2024 Sep 23:2023.11.29.569327. doi: 10.1101/2023.11.29.569327.

本文引用的文献

1
From genomics to chemical genomics: new developments in KEGG.
Nucleic Acids Res. 2006 Jan 1;34(Database issue):D354-7. doi: 10.1093/nar/gkj102.
2
Prokaryotic toxin-antitoxin stress response loci.
Nat Rev Microbiol. 2005 May;3(5):371-82. doi: 10.1038/nrmicro1147.
3
Phenotypic tolerance: antibiotic enrichment of noninherited resistance in bacterial populations.
Antimicrob Agents Chemother. 2005 Apr;49(4):1483-94. doi: 10.1128/AAC.49.4.1483-1494.2005.
4
Regulation of uptake and processing of the quorum-sensing autoinducer AI-2 in Escherichia coli.
J Bacteriol. 2005 Jan;187(1):238-48. doi: 10.1128/JB.187.1.238-248.2005.
5
Specialized persister cells and the mechanism of multidrug tolerance in Escherichia coli.
J Bacteriol. 2004 Dec;186(24):8172-80. doi: 10.1128/JB.186.24.8172-8180.2004.
7
Bacterial persistence as a phenotypic switch.
Science. 2004 Sep 10;305(5690):1622-5. doi: 10.1126/science.1099390. Epub 2004 Aug 12.
8
Delayed-relaxed response explained by hyperactivation of RelE.
Mol Microbiol. 2004 Jul;53(2):587-97. doi: 10.1111/j.1365-2958.2004.04127.x.
9
Persister cells and tolerance to antimicrobials.
FEMS Microbiol Lett. 2004 Jan 15;230(1):13-8. doi: 10.1016/S0378-1097(03)00856-5.
10
Bacterial production of methylglyoxal: a survival strategy or death by misadventure?
Biochem Soc Trans. 2003 Dec;31(Pt 6):1406-8. doi: 10.1042/bst0311406.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验