Suppr超能文献

基因组结合事件的高分辨率计算模型。

High-resolution computational models of genome binding events.

作者信息

Qi Yuan, Rolfe Alex, MacIsaac Kenzie D, Gerber Georg K, Pokholok Dmitry, Zeitlinger Julia, Danford Timothy, Dowell Robin D, Fraenkel Ernest, Jaakkola Tommi S, Young Richard A, Gifford David K

机构信息

Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 32 Vassar Street, Cambridge, MA 02139, USA.

出版信息

Nat Biotechnol. 2006 Aug;24(8):963-70. doi: 10.1038/nbt1233.

Abstract

Direct physical information that describes where transcription factors, nucleosomes, modified histones, RNA polymerase II and other key proteins interact with the genome provides an invaluable mechanistic foundation for understanding complex programs of gene regulation. We present a method, joint binding deconvolution (JBD), which uses additional easily obtainable experimental data about chromatin immunoprecipitation (ChIP) to improve the spatial resolution of the transcription factor binding locations inferred from ChIP followed by DNA microarray hybridization (ChIP-Chip) data. Based on this probabilistic model of binding data, we further pursue improved spatial resolution by using sequence information. We produce positional priors that link ChIP-Chip data to sequence data by guiding motif discovery to inferred protein-DNA binding sites. We present results on the yeast transcription factors Gcn4 and Mig2 to demonstrate JBD's spatial resolution capabilities and show that positional priors allow computational discovery of the Mig2 motif when a standard approach fails.

摘要

描述转录因子、核小体、修饰组蛋白、RNA聚合酶II和其他关键蛋白与基因组相互作用位置的直接物理信息,为理解复杂的基因调控程序提供了极其宝贵的机制基础。我们提出了一种联合结合反卷积(JBD)方法,该方法利用关于染色质免疫沉淀(ChIP)的其他易于获得的实验数据,来提高从ChIP后接DNA微阵列杂交(ChIP-Chip)数据推断出的转录因子结合位置的空间分辨率。基于这种结合数据的概率模型,我们通过使用序列信息进一步提高空间分辨率。我们通过引导基序发现到推断的蛋白质-DNA结合位点,生成将ChIP-Chip数据与序列数据联系起来的位置先验。我们展示了酵母转录因子Gcn4和Mig2的结果,以证明JBD的空间分辨率能力,并表明当标准方法失败时,位置先验允许通过计算发现Mig2基序。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验