Suppr超能文献

酵母细胞周期转录调控模块的计算重建

Computational reconstruction of transcriptional regulatory modules of the yeast cell cycle.

作者信息

Wu Wei-Sheng, Li Wen-Hsiung, Chen Bor-Sen

机构信息

Lab of Control and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, 300, Taiwan.

出版信息

BMC Bioinformatics. 2006 Sep 29;7:421. doi: 10.1186/1471-2105-7-421.

Abstract

BACKGROUND

A transcriptional regulatory module (TRM) is a set of genes that is regulated by a common set of transcription factors (TFs). By organizing the genome into TRMs, a living cell can coordinate the activities of many genes and carry out complex functions. Therefore, identifying TRMs is helpful for understanding gene regulation.

RESULTS

Integrating gene expression and ChIP-chip data, we develop a method, called MOdule Finding Algorithm (MOFA), for reconstructing TRMs of the yeast cell cycle. MOFA identified 87 TRMs, which together contain 336 distinct genes regulated by 40 TFs. Using various kinds of data, we validated the biological relevance of the identified TRMs. Our analysis shows that different combinations of a fairly small number of TFs are responsible for regulating a large number of genes involved in different cell cycle phases and that there may exist crosstalk between the cell cycle and other cellular processes. MOFA is capable of finding many novel TF-target gene relationships and can determine whether a TF is an activator or/and a repressor. Finally, MOFA refines some clusters proposed by previous studies and provides a better understanding of how the complex expression program of the cell cycle is regulated.

CONCLUSION

MOFA was developed to reconstruct TRMs of the yeast cell cycle. Many of these TRMs are in agreement with previous studies. Further, MOFA inferred many interesting modules and novel TF combinations. We believe that computational analysis of multiple types of data will be a powerful approach to studying complex biological systems when more and more genomic resources such as genome-wide protein activity data and protein-protein interaction data become available.

摘要

背景

转录调控模块(TRM)是一组受一组共同转录因子(TF)调控的基因。通过将基因组组织成TRM,活细胞可以协调许多基因的活动并执行复杂的功能。因此,识别TRM有助于理解基因调控。

结果

整合基因表达和芯片数据,我们开发了一种名为模块发现算法(MOFA)的方法,用于重建酵母细胞周期的TRM。MOFA识别出87个TRM,它们总共包含由40个TF调控的336个不同基因。使用各种数据,我们验证了所识别TRM的生物学相关性。我们的分析表明,相当少量的TF的不同组合负责调控参与不同细胞周期阶段的大量基因,并且细胞周期与其他细胞过程之间可能存在串扰。MOFA能够发现许多新的TF-靶基因关系,并能确定一个TF是激活剂还是/和抑制剂。最后,MOFA完善了先前研究提出的一些聚类,并更好地理解了细胞周期复杂的表达程序是如何被调控的。

结论

开发MOFA是为了重建酵母细胞周期的TRM。其中许多TRM与先前的研究一致。此外,MOFA推断出许多有趣的模块和新TF组合。我们相信,当越来越多的基因组资源如全基因组蛋白质活性数据和蛋白质-蛋白质相互作用数据可用时,对多种类型数据的计算分析将成为研究复杂生物系统的有力方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c5c/1637117/0b93d8317962/1471-2105-7-421-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验