Suppr超能文献

在尖峰时间依赖性可塑性中的脊髓钙离子信号传导

Spine Ca2+ signaling in spike-timing-dependent plasticity.

作者信息

Nevian Thomas, Sakmann Bert

机构信息

Department of Cell Physiology, Max-Planck Institute for Medical Research, D-69120 Heidelberg, Germany.

出版信息

J Neurosci. 2006 Oct 25;26(43):11001-13. doi: 10.1523/JNEUROSCI.1749-06.2006.

Abstract

Calcium is a second messenger, which can trigger the modification of synaptic efficacy. We investigated the question of whether a differential rise in postsynaptic Ca2+ ([Ca2+]i) alone is sufficient to account for the induction of long-term potentiation (LTP) and long-term depression (LTD) of EPSPs in the basal dendrites of layer 2/3 pyramidal neurons of the somatosensory cortex. Volume-averaged [Ca2+]i transients were measured in spines of the basal dendritic arbor for spike-timing-dependent plasticity induction protocols. The rise in [Ca2+]i was uncorrelated to the direction of the change in synaptic efficacy, because several pairing protocols evoked similar spine [Ca2+]i transients but resulted in either LTP or LTD. The sequence dependence of near-coincident presynaptic and postsynaptic activity on the direction of changes in synaptic strength suggested that LTP and LTD were induced by two processes, which were controlled separately by postsynaptic [Ca2+]i levels. Activation of voltage-dependent Ca2+ channels before metabotropic glutamate receptors (mGluRs) resulted in the phospholipase C-dependent (PLC-dependent) synthesis of endocannabinoids, which acted as a retrograde messenger to induce LTD. LTP required a large [Ca2+]i transient evoked by NMDA receptor activation. Blocking mGluRs abolished the induction of LTD and uncovered the Ca2+-dependent induction of LTP. We conclude that the volume-averaged peak elevation of [Ca2+]i in spines of layer 2/3 pyramids determines the magnitude of long-term changes in synaptic efficacy. The direction of the change is controlled, however, via a mGluR-coupled signaling cascade. mGluRs act in conjunction with PLC as sequence-sensitive coincidence detectors when postsynaptic precede presynaptic action potentials to induce LTD. Thus presumably two different Ca2+ sensors in spines control the induction of spike-timing-dependent synaptic plasticity.

摘要

钙是一种第二信使,可触发突触效能的改变。我们研究了仅突触后Ca2+([Ca2+]i)的差异性升高是否足以解释体感皮层第2/3层锥体神经元基底树突中兴奋性突触后电位(EPSP)的长时程增强(LTP)和长时程抑制(LTD)的诱导这一问题。在基底树突分支的棘突中测量体积平均[Ca2+]i瞬变,用于依赖于尖峰时间的可塑性诱导方案。[Ca2+]i的升高与突触效能变化的方向无关,因为几种配对方案诱发了相似的棘突[Ca2+]i瞬变,但导致了LTP或LTD。突触前和突触后近同步活动对突触强度变化方向的序列依赖性表明,LTP和LTD是由两个过程诱导的,这两个过程分别由突触后[Ca2+]i水平控制。代谢型谷氨酸受体(mGluRs)之前电压依赖性Ca2+通道的激活导致内源性大麻素的磷脂酶C依赖性(PLC依赖性)合成,内源性大麻素作为逆行信使诱导LTD。LTP需要由NMDA受体激活诱发的大的[Ca2+]i瞬变。阻断mGluRs消除了LTD的诱导,并揭示了LTP的Ca2+依赖性诱导。我们得出结论,第2/3层锥体神经元棘突中[Ca2+]i的体积平均峰值升高决定了突触效能长期变化的幅度。然而,变化的方向是通过mGluR偶联的信号级联来控制的。当突触后动作电位先于突触前动作电位时,mGluRs与PLC一起作为序列敏感的巧合探测器来诱导LTD。因此,推测棘突中两种不同的Ca2+传感器控制着依赖于尖峰时间的突触可塑性的诱导。

相似文献

1
Spine Ca2+ signaling in spike-timing-dependent plasticity.
J Neurosci. 2006 Oct 25;26(43):11001-13. doi: 10.1523/JNEUROSCI.1749-06.2006.
3
A spike-timing-dependent plasticity rule for dendritic spines.
Nat Commun. 2020 Aug 26;11(1):4276. doi: 10.1038/s41467-020-17861-7.
4
Dopamine receptor activation is required for corticostriatal spike-timing-dependent plasticity.
J Neurosci. 2008 Mar 5;28(10):2435-46. doi: 10.1523/JNEUROSCI.4402-07.2008.
6
Spike timing-dependent plasticity: a learning rule for dendritic integration in rat CA1 pyramidal neurons.
J Physiol. 2008 Feb 1;586(3):779-93. doi: 10.1113/jphysiol.2007.147017. Epub 2007 Nov 29.
7
Hebbian Spike-Timing Dependent Plasticity at the Cerebellar Input Stage.
J Neurosci. 2017 Mar 15;37(11):2809-2823. doi: 10.1523/JNEUROSCI.2079-16.2016. Epub 2017 Feb 10.
8
Dendritic calcium nonlinearities switch the direction of synaptic plasticity in fast-spiking interneurons.
J Neurosci. 2014 Mar 12;34(11):3864-77. doi: 10.1523/JNEUROSCI.2253-13.2014.

引用本文的文献

1
Neocortical layer-5 tLTD relies on non-ionotropic presynaptic NMDA receptor signaling.
Elife. 2025 Jul 25;14:RP106284. doi: 10.7554/eLife.106284.
4
Postsynaptic spiking determines anti-Hebbian LTD in visual cortex basket cells.
Front Synaptic Neurosci. 2025 Feb 17;17:1548563. doi: 10.3389/fnsyn.2025.1548563. eCollection 2025.
5
Brain Plasticity and Cell Competition: Immediate Early Genes Are the Focus.
Cells. 2025 Jan 19;14(2):143. doi: 10.3390/cells14020143.
6
Expansion of epileptogenic networks via neuroplasticity in neural mass models.
PLoS Comput Biol. 2024 Dec 3;20(12):e1012666. doi: 10.1371/journal.pcbi.1012666. eCollection 2024 Dec.
7
Nitrous Oxide activates layer 5 prefrontal neurons via SK2 channel inhibition for antidepressant effect.
Res Sq. 2024 Nov 15:rs.3.rs-5141491. doi: 10.21203/rs.3.rs-5141491/v1.
8
Cannabis, Endocannabinoids and Brain Development: From Embryogenesis to Adolescence.
Cells. 2024 Nov 13;13(22):1875. doi: 10.3390/cells13221875.
9
Synaptopodin: a key regulator of Hebbian plasticity.
Front Cell Neurosci. 2024 Nov 6;18:1482844. doi: 10.3389/fncel.2024.1482844. eCollection 2024.

本文引用的文献

1
Learning induces long-term potentiation in the hippocampus.
Science. 2006 Aug 25;313(5790):1093-7. doi: 10.1126/science.1128134.
2
Whole-cell recordings in freely moving rats.
Neuron. 2006 Aug 17;51(4):399-407. doi: 10.1016/j.neuron.2006.07.004.
3
Background synaptic activity is sparse in neocortex.
J Neurosci. 2006 Aug 9;26(32):8267-77. doi: 10.1523/JNEUROSCI.2152-06.2006.
4
Novel presynaptic mechanisms for coincidence detection in synaptic plasticity.
Curr Opin Neurobiol. 2006 Jun;16(3):312-22. doi: 10.1016/j.conb.2006.05.008. Epub 2006 May 18.
5
Two coincidence detectors for spike timing-dependent plasticity in somatosensory cortex.
J Neurosci. 2006 Apr 19;26(16):4166-77. doi: 10.1523/JNEUROSCI.0176-06.2006.
6
State-dependent dendritic computation in hippocampal CA1 pyramidal neurons.
J Neurosci. 2006 Feb 15;26(7):2088-100. doi: 10.1523/JNEUROSCI.4428-05.2006.
7
Induction and expression mechanisms of postsynaptic NMDA receptor-independent homosynaptic long-term depression.
Prog Neurobiol. 2006 Jan;78(1):17-37. doi: 10.1016/j.pneurobio.2005.12.001. Epub 2006 Jan 19.
10
Plasticity of dendritic function.
Curr Opin Neurobiol. 2005 Jun;15(3):334-42. doi: 10.1016/j.conb.2005.05.013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验