Anglada Josep M, Olivella Santiago, Solé Albert
Institut d'Investigacions Químiques i Ambientals de Barcelona, CSIC, Jordi Girona 18-26, 08034-Barcelona, Catalonia, Spain.
J Phys Chem A. 2007 Mar 8;111(9):1695-704. doi: 10.1021/jp066823d. Epub 2007 Feb 10.
The singlet and triplet potential energy surfaces (PESs) for the gas-phase bimolecular self-reaction of HOO*, a key reaction in atmospheric environments, have been investigated by means of quantum-mechanical electronic structure methods (CASSCF and CASPT2). All the reaction pathways on both PESs consist of a first step involving the barrierless formation of a prereactive doubly hydrogen-bonded complex, which is a diradical species lying about 8 kcal/mol below the energy of the reactants at 0 K. The lowest energy reaction pathway on both PESs is the degenerate double hydrogen exchange between the HOO* moieties of the prereactive complex via a double proton transfer mechanism involving an energy barrier of only 1.1 kcal/mol for the singlet and 3.3 kcal/mol for the triplet at 0 K. The single H-atom transfer between the two HOO* moieties of the prereactive complex (yielding HOOH + O2) through a pathway keeping a planar arrangement of the six atoms involves a conical intersection between either two singlet or two triplet states of A' and A" symmetries. Thus, the lowest energy reaction pathway occurs via a nonplanar cisoid transition structure with an energy barrier of 5.8 kcal/mol for the triplet and 17.5 kcal/mol for the singlet at 0 K. The simple addition between the terminal oxygen atoms of the two HOO* moieties of the prereactive complex, leading to the straight chain H2O4 intermediate on the singlet PES, involves an energy barrier of 7.3 kcal/mol at 0 K. Because the decomposition of such an intermediate into HOOH + O2 entails an energy barrier of 45.2 kcal/mol at 0 K, it is concluded that the single H-atom transfer on the triplet PES is the dominant pathway leading to HOOH + O2. Finally, the strong negative temperature dependence of the rate constant observed for this reaction is attributed to the reversible formation of the prereactive complex in the entrance channel rather than to a short-lived tetraoxide intermediate.
采用量子力学电子结构方法(CASSCF和CASPT2)研究了大气环境中关键反应——气相双分子HOO自反应的单重态和三重态势能面(PESs)。两个势能面上的所有反应途径都包含第一步,即无势垒形成预反应双氢键复合物,这是一种双自由基物种,在0 K时比反应物能量低约8 kcal/mol。两个势能面上能量最低的反应途径是预反应复合物的HOO部分之间通过双质子转移机制进行的简并双氢交换,在0 K时,单重态的能垒仅为1.1 kcal/mol,三重态为3.3 kcal/mol。预反应复合物的两个HOO部分之间通过保持六个原子平面排列的途径进行单氢原子转移(生成HOOH + O2),涉及A'和A"对称性的两个单重态或两个三重态之间的锥形交叉。因此,能量最低的反应途径通过非平面顺式过渡结构发生,在0 K时,三重态的能垒为5.8 kcal/mol,单重态为17.5 kcal/mol。预反应复合物的两个HOO部分的末端氧原子之间的简单加成,在单重态PES上生成直链H2O4中间体,在0 K时的能垒为7.3 kcal/mol。由于这种中间体分解为HOOH + O2在0 K时的能垒为45.2 kcal/mol,因此得出结论,三重态PES上的单氢原子转移是生成HOOH + O2的主要途径。最后,该反应速率常数观察到的强烈负温度依赖性归因于入口通道中预反应复合物的可逆形成,而不是归因于短寿命的四氧化物中间体。