Asatryan Rubik, Bozzelli Joseph W
Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, USA.
Phys Chem Chem Phys. 2008 Apr 7;10(13):1769-80. doi: 10.1039/b716179d. Epub 2008 Feb 19.
Dimethyl sulfoxide (DMSO) is the major sulfur-containing constituent of the Marine Boundary Layer. It is a significant source of H2SO4 aerosol/particles and methane sulfonic acid via atmospheric oxidation processes, where the mechanism is not established. In this study, several new, low-temperature pathways are revealed in the oxidation of DMSO using CBS-QB3 and G3MP2 multilevel and B3LYP hybrid density functional quantum chemical methods. Unlike analogous hydrocarbon peroxy radicals the chemically activated DMSO peroxy radical, [CH3S(=O)CH2OO*], predominantly undergoes simple dissociation to a methylsulfinyl radical CH3S(=O) and a Criegee intermediate, CH2OO, with the barrier to dissociation 11.3 kcal mol(-1) below the energy of the CH3S(=O)CH2* + O2 reactants. The well depth for addition of O2 to the CH3S(=O)CH2 precursor radical is 29.6 kcal mol(-1) at the CBS-QB3 level of theory. We believe that this reaction may serve an important role in atmospheric photochemical and irradiated biological (oxygen-rich) media where formation of initial radicals is facilitated even at lower temperatures. The Criegee intermediate (carbonyl oxide, peroxymethylene) and sulfinyl radical can further decompose, resulting in additional chain branching. A second reaction channel important for oxidation processes includes formation (via intramolecular H atom transfer) and further decomposition of hydroperoxide methylsulfoxide radical, *CH2S(=O)CH2OOH over a low barrier of activation. The initial H-transfer reaction is similar and common in analogous hydrocarbon radical + O2 reactions; but the subsequent very low (3-6 kcal mol(-1)) barrier (14 kcal mol(-1) below the initial reagents) to beta-scission products is not common in HC systems. The low energy reaction of the hydroperoxide radical is a beta-scission elimination of CH2S(=O)CH2OOH into the CH2=S=O + CH2O + OH product set. This beta-scission barrier is low, because of the delocalization of the CH2 radical center through the -S(=O) group, to the -CH2OOH fragment in the transition state structure. The hydroperoxide methylsulfoxide radical can also decompose via a second reaction channel of intramolecular OH migration, yielding formaldehyde and a sulfur-centered hydroxymethylsulfinyl radical HOCH2S(=O). The barrier of activation relative to initial reagents is 4.2 kcal mol(-1). Heats of formation for DMSO, DMSO carbon-centered radical and Criegee intermediate are evaluated at 298 K as -35.97 +/- 0.05, 13.0 +/- 0.2 and 25.3 +/- 0.7 kcal mol(-1) respectively using isodesmic reaction analysis. The [CH3S(=O) + CH2OO] product set is shown to form a van der Waals complex that results in O-atom transfer reaction and the formation of new products CH3SO2 radical and CH2O. Proper orientation of the Criegee intermediate and methylsulfinyl radical, as a pre-stabilized pre-reaction complex, assist the process. The DMSO radical reaction is also compared to that of acetonyl radical.
二甲基亚砜(DMSO)是海洋边界层中主要的含硫成分。它是通过大气氧化过程产生硫酸气溶胶/颗粒和甲磺酸的重要来源,但其机制尚未明确。在本研究中,使用CBS - QB3和G3MP2多级以及B3LYP杂化密度泛函量子化学方法揭示了DMSO氧化中的几种新的低温途径。与类似的烃类过氧自由基不同,化学活化的DMSO过氧自由基[CH3S(=O)CH2OO*] 主要经历简单解离,生成甲亚磺酰基自由基CH3S(=O)和一个Criegee中间体CH2OO,解离能垒比CH3S(=O)CH2* + O2反应物的能量低11.3 kcal mol(-1)。在CBS - QB3理论水平下,O2加成到CH3S(=O)CH2前体自由基的阱深为29.6 kcal mol(-1)。我们认为,该反应在大气光化学和辐照生物(富氧)介质中可能起重要作用,即使在较低温度下也有利于初始自由基的形成。Criegee中间体(羰基氧化物,过氧亚甲基)和亚磺酰基自由基可进一步分解,导致额外的链分支。氧化过程中另一个重要的反应通道包括通过分子内H原子转移形成过氧化氢甲亚砜自由基CH2S(=O)CH2OOH并在低活化能垒下进一步分解。最初的H转移反应在类似的烃类自由基 + O2反应中相似且常见;但随后对β - 断裂产物的能垒非常低(3 - 6 kcal mol(-1))(比初始反应物低14 kcal mol(-1))在烃类体系中并不常见。过氧化氢自由基的低能反应是CH2S(=O)CH2OOH通过β - 断裂消除生成CH2=S=O + CH2O + OH产物组。由于CH2自由基中心通过 - S(=O)基团离域到过渡态结构中的 - CH2OOH片段,所以该β - 断裂能垒较低。过氧化氢甲亚砜自由基也可通过分子内OH迁移的第二个反应通道分解,生成甲醛和以硫为中心的羟甲基亚磺酰基自由基HOCH2S*(=O)。相对于初始反应物的活化能垒为4.2 kcal mol(-1)。使用等键反应分析在298 K下评估DMSO、以碳为中心的DMSO自由基和Criegee中间体的生成热分别为 - 35.97 +/- 0.05、13.0 +/- 0.2和25.3 +/- 0.7 kcal mol(-1)。[CH3S*(=O) + CH2OO]产物组显示形成范德华络合物,导致O原子转移反应并形成新产物CH3SO2*自由基和CH2O。Criegee中间体和甲亚磺酰基自由基作为预稳定的预反应络合物的正确取向有助于该过程。还将DMSO自由基反应与丙酮基自由基反应进行了比较。