Ke Wei, Bethel Christopher R, Thomson Jodi M, Bonomo Robert A, van den Akker Focco
Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106-4935, USA.
Biochemistry. 2007 May 15;46(19):5732-40. doi: 10.1021/bi700300u. Epub 2007 Apr 19.
Beta-lactamases inactivate beta-lactam antibiotics and are a major cause of antibiotic resistance. The recent outbreaks of Klebsiella pneumoniae carbapenem resistant (KPC) infections mediated by KPC type beta-lactamases are creating a serious threat to our "last resort" antibiotics, the carbapenems. KPC beta-lactamases are serine carbapenemases and are a subclass of class A beta-lactamases that have evolved to efficiently hydrolyze carbapenems and cephamycins which contain substitutions at the alpha-position proximal to the carbonyl group that normally render these beta-lactams resistant to hydrolysis. To investigate the molecular basis of this carbapenemase activity, we have determined the structure of KPC-2 at 1.85 A resolution. The active site of KPC-2 reveals the presence of a bicine buffer molecule which interacts via its carboxyl group with conserved active site residues S130, K234, T235, and T237; these likely resemble the interactions the beta-lactam carboxyl moiety makes in the Michaelis-Menten complex. Comparison of the KPC-2 structure with non-carbapenemases and previously determined NMC-A and SME-1 carbapenemase structures shows several active site alterations that are unique among carbapenemases. An outward shift of the catalytic S70 residue renders the active sites of the carbapenemases more shallow, likely allowing easier access of the bulkier substrates. Further space for the alpha-substituents is potentially provided by shifts in N132 and N170 in addition to concerted movements in the postulated carboxyl binding pocket that might allow the substrates to bind at a slightly different angle to accommodate these alpha-substituents. The structure of KPC-2 provides key insights into the carbapenemase activity of emerging class A beta-lactamases.
β-内酰胺酶可使β-内酰胺类抗生素失活,是抗生素耐药性的主要原因。近期由KPC型β-内酰胺酶介导的肺炎克雷伯菌耐碳青霉烯感染的爆发,对我们的“最后一道防线”抗生素——碳青霉烯类药物构成了严重威胁。KPCβ-内酰胺酶是丝氨酸碳青霉烯酶,属于A类β-内酰胺酶的一个亚类,该亚类已经进化到能够有效水解碳青霉烯类和头孢霉素类药物,这些药物在羰基近端的α位含有取代基,通常使这些β-内酰胺类药物对水解具有抗性。为了研究这种碳青霉烯酶活性的分子基础,我们已经确定了分辨率为1.85 Å的KPC-2的结构。KPC-2的活性位点显示存在一个二乙醇胺缓冲分子,该分子通过其羧基与保守的活性位点残基S130、K234、T235和T237相互作用;这些可能类似于β-内酰胺羧基部分在米氏复合物中的相互作用。将KPC-2的结构与非碳青霉烯酶以及先前确定的NMC-A和SME-1碳青霉烯酶结构进行比较,发现了一些在碳青霉烯酶中独特的活性位点改变。催化性S70残基向外移动,使碳青霉烯酶的活性位点变浅,可能使体积更大的底物更容易接近。除了假定的羧基结合口袋中的协同运动可能使底物以稍微不同的角度结合以容纳这些α-取代基之外,N132和N170的移动还可能为α-取代基提供更多空间。KPC-2的结构为新兴的A类β-内酰胺酶的碳青霉烯酶活性提供了关键见解。