Suppr超能文献

突触前和突触后信号传导机制的共同激活决定了细胞特异性的尖峰时间依赖性可塑性。

Coactivation of pre- and postsynaptic signaling mechanisms determines cell-specific spike-timing-dependent plasticity.

作者信息

Tzounopoulos Thanos, Rubio Maria E, Keen John E, Trussell Laurence O

机构信息

Department of Cell Biology and Anatomy, Rosalind Franklin University, Chicago Medical School, North Chicago, IL 60064, USA.

出版信息

Neuron. 2007 Apr 19;54(2):291-301. doi: 10.1016/j.neuron.2007.03.026.

Abstract

Synapses may undergo long-term increases or decreases in synaptic strength dependent on critical differences in the timing between pre-and postsynaptic activity. Such spike-timing-dependent plasticity (STDP) follows rules that govern how patterns of neural activity induce changes in synaptic strength. Synaptic plasticity in the dorsal cochlear nucleus (DCN) follows Hebbian and anti-Hebbian patterns in a cell-specific manner. Here we show that these opposing responses to synaptic activity result from differential expression of two signaling pathways. Ca2+/calmodulin-dependent protein kinase II (CaMKII) signaling underlies Hebbian postsynaptic LTP in principal cells. By contrast, in interneurons, a temporally precise anti-Hebbian synaptic spike-timing rule results from the combined effects of postsynaptic CaMKII-dependent LTP and endocannabinoid-dependent presynaptic LTD. Cell specificity in the circuit arises from selective targeting of presynaptic CB1 receptors in different axonal terminals. Hence, pre- and postsynaptic sites of expression determine both the sign and timing requirements of long-term plasticity in interneurons.

摘要

突触强度可能会根据突触前和突触后活动时间的关键差异而经历长期增强或减弱。这种依赖于尖峰时间的可塑性(STDP)遵循支配神经活动模式如何诱导突触强度变化的规则。耳蜗背核(DCN)中的突触可塑性以细胞特异性方式遵循赫布和反赫布模式。在这里,我们表明,对突触活动的这些相反反应是由两条信号通路的差异表达引起的。Ca2+/钙调蛋白依赖性蛋白激酶II(CaMKII)信号传导是主细胞中赫布突触后长时程增强(LTP)的基础。相比之下,在中间神经元中,一种时间精确的反赫布突触尖峰时间规则是由突触后CaMKII依赖性LTP和内源性大麻素依赖性突触前长时程抑制(LTD)的联合作用产生的。回路中的细胞特异性源于不同轴突终末中突触前CB1受体的选择性靶向。因此,表达的突触前和突触后位点决定了中间神经元中长期可塑性的正负和时间要求。

相似文献

3
Cell-specific, spike timing-dependent plasticities in the dorsal cochlear nucleus.
Nat Neurosci. 2004 Jul;7(7):719-25. doi: 10.1038/nn1272. Epub 2004 Jun 20.
4
Hebbian Spike-Timing Dependent Plasticity at the Cerebellar Input Stage.
J Neurosci. 2017 Mar 15;37(11):2809-2823. doi: 10.1523/JNEUROSCI.2079-16.2016. Epub 2017 Feb 10.
5
Presynaptic Spike Timing-Dependent Long-Term Depression in the Mouse Hippocampus.
Cereb Cortex. 2016 Aug;26(8):3637-3654. doi: 10.1093/cercor/bhw172. Epub 2016 Jun 9.
6
Spine Ca2+ signaling in spike-timing-dependent plasticity.
J Neurosci. 2006 Oct 25;26(43):11001-13. doi: 10.1523/JNEUROSCI.1749-06.2006.
7
Long-term population spike-timing-dependent plasticity promotes synaptic tagging but not cross-tagging in rat hippocampal area CA1.
Proc Natl Acad Sci U S A. 2019 Mar 19;116(12):5737-5746. doi: 10.1073/pnas.1817643116. Epub 2019 Feb 28.
10
Mechanisms underlying input-specific expression of endocannabinoid-mediated synaptic plasticity in the dorsal cochlear nucleus.
Hear Res. 2011 Sep;279(1-2):67-73. doi: 10.1016/j.heares.2011.03.007. Epub 2011 Mar 21.

引用本文的文献

2
Contiguity in perception: origins in cellular associative computations.
Trends Neurosci. 2024 Mar;47(3):170-180. doi: 10.1016/j.tins.2024.01.001. Epub 2024 Feb 2.
3
Targeting the Limbic System: Insights into Its Involvement in Tinnitus.
Int J Mol Sci. 2023 Jun 8;24(12):9889. doi: 10.3390/ijms24129889.
4
MAM-2201 acute administration impairs motor, sensorimotor, prepulse inhibition, and memory functions in mice: a comparison with its analogue AM-2201.
Psychopharmacology (Berl). 2023 Jul;240(7):1435-1452. doi: 10.1007/s00213-023-06378-8. Epub 2023 May 26.
5
Characterization of three cholinergic inputs to the cochlear nucleus.
J Chem Neuroanat. 2023 Sep;131:102284. doi: 10.1016/j.jchemneu.2023.102284. Epub 2023 May 8.
6
Role of auditory-somatosensory corticothalamic circuit integration in analgesia.
Cell Calcium. 2023 May;111:102717. doi: 10.1016/j.ceca.2023.102717. Epub 2023 Mar 12.
7
In Vivo Bio-Activation of JWH-175 to JWH-018: Pharmacodynamic and Pharmacokinetic Studies in Mice.
Int J Mol Sci. 2022 Jul 21;23(14):8030. doi: 10.3390/ijms23148030.
9
Cannabinoid Signaling in Auditory Function and Development.
Front Mol Neurosci. 2021 May 17;14:678510. doi: 10.3389/fnmol.2021.678510. eCollection 2021.

本文引用的文献

1
Spine Ca2+ signaling in spike-timing-dependent plasticity.
J Neurosci. 2006 Oct 25;26(43):11001-13. doi: 10.1523/JNEUROSCI.1749-06.2006.
2
Multiple forms of long-term plasticity at unitary neocortical layer 5 synapses.
Neuropharmacology. 2007 Jan;52(1):176-84. doi: 10.1016/j.neuropharm.2006.07.021. Epub 2006 Aug 8.
4
Synaptic democracy in active dendrites.
J Neurophysiol. 2006 Nov;96(5):2307-18. doi: 10.1152/jn.00149.2006. Epub 2006 Jul 12.
5
Spike timing-dependent plasticity: from synapse to perception.
Physiol Rev. 2006 Jul;86(3):1033-48. doi: 10.1152/physrev.00030.2005.
6
Malleability of spike-timing-dependent plasticity at the CA3-CA1 synapse.
J Neurosci. 2006 Jun 14;26(24):6610-7. doi: 10.1523/JNEUROSCI.5388-05.2006.
7
Two coincidence detectors for spike timing-dependent plasticity in somatosensory cortex.
J Neurosci. 2006 Apr 19;26(16):4166-77. doi: 10.1523/JNEUROSCI.0176-06.2006.
9
Endocannabinoids control the induction of cerebellar LTD.
Neuron. 2005 Nov 23;48(4):647-59. doi: 10.1016/j.neuron.2005.09.020.
10
High-concentration rapid transients of glutamate mediate neural-glial communication via ectopic release.
J Neurosci. 2005 Aug 17;25(33):7538-47. doi: 10.1523/JNEUROSCI.1927-05.2005.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验