Suppr超能文献

组成型原始细胞与其环境的共同进化。

Coevolution of compositional protocells and their environment.

作者信息

Shenhav Barak, Oz Aia, Lancet Doron

机构信息

Department of Molecular Genetics and Crown Human Genome Centre, The Weizmann Institute of Science, Rehovot 76100, Israel.

出版信息

Philos Trans R Soc Lond B Biol Sci. 2007 Oct 29;362(1486):1813-9. doi: 10.1098/rstb.2007.2073.

Abstract

The coevolution of environment and living organisms is well known in nature. Here, it is suggested that similar processes can take place before the onset of life, where protocellular entities, rather than full-fledged living systems, coevolve along with their surroundings. Specifically, it is suggested that the chemical composition of the environment may have governed the chemical repertoire generated within molecular assemblies, compositional protocells, while compounds generated within these protocells altered the chemical composition of the environment. We present an extension of the graded autocatalysis replication domain (GARD) model--the environment exchange polymer GARD (EE-GARD) model. In the new model, molecules, which are formed in a protocellular assembly, may be exported to the environment that surrounds the protocell. Computer simulations of the model using an infinite-sized environment showed that EE-GARD assemblies may assume several distinct quasi-stationary compositions (composomes), similar to the observations in previous variants of the GARD model. A statistical analysis suggested that the repertoire of composomes manifested by the assemblies is independent of time. In simulations with a finite environment, this was not the case. Composomes, which were frequent in the early stages of the simulation disappeared, while others emerged. The change in the frequencies of composomes was found to be correlated with changes induced on the environment by the assembly. The EE-GARD model is the first GARD model to portray a possible time evolution of the composomes repertoire.

摘要

环境与生物有机体的共同进化在自然界中是众所周知的。在此,有人提出在生命出现之前可能会发生类似的过程,即原细胞实体而非成熟的生命系统与其周围环境共同进化。具体而言,有人提出环境的化学成分可能支配了分子聚集体(组成型原细胞)内产生的化学组成,而这些原细胞内产生的化合物则改变了环境的化学成分。我们提出了分级自催化复制域(GARD)模型的一个扩展——环境交换聚合物GARD(EE-GARD)模型。在新模型中,在原细胞聚集体中形成的分子可能会被输出到原细胞周围的环境中。使用无限大小环境对该模型进行的计算机模拟表明,EE-GARD聚集体可能呈现出几种不同的准稳态组成(组成体),这与之前GARD模型变体中的观察结果相似。统计分析表明,聚集体表现出的组成体组成与时间无关。在有限环境的模拟中,情况并非如此。在模拟早期频繁出现的组成体消失了,而其他组成体出现了。发现组成体频率的变化与聚集体对环境引起的变化相关。EE-GARD模型是第一个描绘组成体组成可能随时间演变的GARD模型。

相似文献

1
Coevolution of compositional protocells and their environment.
Philos Trans R Soc Lond B Biol Sci. 2007 Oct 29;362(1486):1813-9. doi: 10.1098/rstb.2007.2073.
2
Systems protobiology: origin of life in lipid catalytic networks.
J R Soc Interface. 2018 Jul;15(144). doi: 10.1098/rsif.2018.0159.
3
Polymer GARD: computer simulation of covalent bond formation in reproducing molecular assemblies.
Orig Life Evol Biosph. 2005 Apr;35(2):111-33. doi: 10.1007/s11084-005-5578-z.
4
Quasispecies in population of compositional assemblies.
BMC Evol Biol. 2014 Dec 30;14:265. doi: 10.1186/s12862-014-0265-1.
5
Multispecies population dynamics of prebiotic compositional assemblies.
J Theor Biol. 2014 Sep 21;357:26-34. doi: 10.1016/j.jtbi.2014.05.005. Epub 2014 May 14.
6
Excess mutual catalysis is required for effective evolvability.
Artif Life. 2012 Summer;18(3):243-66. doi: 10.1162/artl_a_00064. Epub 2012 Jun 4.
8
Primordial evolvability: Impasses and challenges.
J Theor Biol. 2015 Sep 21;381:29-38. doi: 10.1016/j.jtbi.2015.06.047. Epub 2015 Jul 9.
9
Protobiotic Systems Chemistry Analyzed by Molecular Dynamics.
Life (Basel). 2019 May 10;9(2):38. doi: 10.3390/life9020038.
10
Spontaneous chiral symmetry breaking in early molecular networks.
Biol Direct. 2010 May 27;5:38. doi: 10.1186/1745-6150-5-38.

引用本文的文献

1
Concepts of a synthetic minimal cell: Information molecules, metabolic pathways, and vesicle reproduction.
Biophys Physicobiol. 2023 Dec 19;21(1):e210002. doi: 10.2142/biophysico.bppb-v21.0002. eCollection 2024.
2
The origin of genetic and metabolic systems: Evolutionary structuralinsights.
Heliyon. 2023 Mar 11;9(3):e14466. doi: 10.1016/j.heliyon.2023.e14466. eCollection 2023 Mar.
3
An evolutionary process without variation and selection.
J R Soc Interface. 2021 Jul;18(180):20210334. doi: 10.1098/rsif.2021.0334. Epub 2021 Jul 28.
4
Systems protobiology: origin of life in lipid catalytic networks.
J R Soc Interface. 2018 Jul;15(144). doi: 10.1098/rsif.2018.0159.
5
Predicting species emergence in simulated complex pre-biotic networks.
PLoS One. 2018 Feb 15;13(2):e0192871. doi: 10.1371/journal.pone.0192871. eCollection 2018.
6
Composite Agency: Semiotics of Modularity and Guiding Interactions.
Biosemiotics. 2017 Jul;10(2):157-178. doi: 10.1007/s12304-017-9301-z. Epub 2017 Jul 27.
7
Quasispecies in population of compositional assemblies.
BMC Evol Biol. 2014 Dec 30;14:265. doi: 10.1186/s12862-014-0265-1.
8
The divergence and natural selection of autocatalytic primordial metabolic systems.
Orig Life Evol Biosph. 2013 Jun;43(3):263-81. doi: 10.1007/s11084-013-9340-7. Epub 2013 Jul 17.
9
Spontaneous chiral symmetry breaking in early molecular networks.
Biol Direct. 2010 May 27;5:38. doi: 10.1186/1745-6150-5-38.
10
Lack of evolvability in self-sustaining autocatalytic networks constraints metabolism-first scenarios for the origin of life.
Proc Natl Acad Sci U S A. 2010 Jan 26;107(4):1470-5. doi: 10.1073/pnas.0912628107. Epub 2010 Jan 4.

本文引用的文献

1
Polymer GARD: computer simulation of covalent bond formation in reproducing molecular assemblies.
Orig Life Evol Biosph. 2005 Apr;35(2):111-33. doi: 10.1007/s11084-005-5578-z.
2
Experimental models of primitive cellular compartments: encapsulation, growth, and division.
Science. 2003 Oct 24;302(5645):618-22. doi: 10.1126/science.1089904.
3
Sea-ice switches and abrupt climate change.
Philos Trans A Math Phys Eng Sci. 2003 Sep 15;361(1810):1935-42; discussion 1942-4. doi: 10.1098/rsta.2003.1244.
4
Bridging nonliving and living matter.
Artif Life. 2003 Summer;9(3):269-316. doi: 10.1162/106454603322392479.
5
Membrane self-assembly processes: steps toward the first cellular life.
Anat Rec. 2002 Nov 1;268(3):196-207. doi: 10.1002/ar.10154.
6
Test of a statistical model for molecular recognition in biological repertoires.
J Theor Biol. 2002 Jun 7;216(3):327-36. doi: 10.1006/jtbi.2002.2538.
7
The molecular roots of compositional inheritance.
J Theor Biol. 2001 Dec 7;213(3):481-91. doi: 10.1006/jtbi.2001.2440.
9
The lipid world.
Orig Life Evol Biosph. 2001 Feb-Apr;31(1-2):119-45. doi: 10.1023/a:1006746807104.
10
Composing life.
EMBO Rep. 2000 Sep;1(3):217-22. doi: 10.1093/embo-reports/kvd063.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验